Answer on Question \#66333 - Math - Differential Equations Question

Verify that the pfaffian differential equation $y z d x+\left(x^{\wedge} 2 y-z x\right) d y+\left(x^{\wedge} 2 z-x y\right) d z=0$ is integrable and hence find its integral.

Solution

We have

$$
y z d x+\left(x^{2} y-z x\right) d y+\left(x^{2} z-x y\right) d z=0
$$

General form of the Pfafffian equation is

$$
P d x+Q d y+R d z=0
$$

The integrability condition for the Pfaffian equation is [1, page 384]

$$
(\operatorname{curl} F, F)=0
$$

where $F=(P, Q, R)$, or

$$
P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=0
$$

Verify this condition for the given equation. We get

$$
\begin{aligned}
& \quad P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)= \\
& =y z(-x+x)+\left(x^{2} y-z x\right)(2 x z-y-y)+\left(x^{2} z-x y\right)(z-2 x y+z)= \\
& =2 x(x y-z)(x z-y)+x(x z-y) 2(z-x y)=0
\end{aligned}
$$

The integrability condition for this equation hold.
If the Pfaffian equation is multiplied by a certain function $\mu(x, y, z)$ then one can obtain in the left-hand side the total differential

$$
\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z=d u=0
$$

That gives the solution of the Pfaffian equation $u=$ const multiply the original equation by $\frac{1}{x^{2}}$. We get

$$
\begin{gathered}
\frac{y z}{x^{2}} d x+\left(y-\frac{z}{x}\right) d y+\left(z-\frac{y}{x}\right) d z=0 \\
\left(\frac{y z}{x^{2}} d x-\frac{z}{x} d y-\frac{y}{x} d z\right)+y d y+z d z \\
d\left(-\frac{y z}{x}\right)+d\left(\frac{y^{2}}{2}\right)+d\left(\frac{z^{2}}{2}\right)=0 \\
d\left(-\frac{y z}{x}+\frac{y^{2}}{2}+\frac{z^{2}}{2}\right)=0
\end{gathered}
$$

Finally we get solution

$$
-\frac{y z}{x}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=C
$$

Answer: The differential equation is integrable. The integral of the original equation is

$$
-\frac{y z}{x}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=C
$$

Reference:

[1] Daniel Zwillinger. Handbook of Differential Equations, 3rd edition

