Answer on Question #66203 – Math – Calculus

Question

Give an example each with justification, of a function defined on]-1, 1[which is i) one-one but not onto.

ii) onto but not one-one.

Solution

i) Let $f: -1, 1 \rightarrow R, f(x) = x.$ Then f is one-one but not onto.

Proof

(one-one): Suppose f(x) = f(y). So x = y. (not onto): For example, there is no x from]-1,1[such that f(x) = 2.

ii) Let

 $f: -1, 1[\rightarrow [0,1), f(x) = x^2.$

Then f is onto but not one-one.

Proof

(*onto*): For every y from [0,1) there is x such that f(x) = y.

(not one-one): Function produces the same values for x and -x, that is, f(x) = f(-x).

Answer: i) $f: -1, 1 \to R, f(x) = x; ii)$ $f: -1, 1 \to [0, 1), f(x) = x^2$.