Answer on Question \#66203 - Math - Calculus

Question

Give an example each with justification, of a function defined on]-1, 1 [which is i) one-one but not onto.
ii) onto but not one-one.

Solution

i) Let
$f:]-1,[\rightarrow R, f(x)=x$.
Then f is one-one but not onto.

Proof

(one-one): Suppose
$f(x)=f(y)$.
So
$x=y$.
(not onto): For example, there is no x from $]-1,1[$ such that $f(x)=2$.
ii) Let

$$
f:]-1,1\left[\rightarrow[0,1), f(x)=x^{2} .\right.
$$

Then f is onto but not one-one.

Proof

(onto): For every y from $[0,1)$ there is x such that $f(x)=y$.
(not one-one): Function produces the same values for x and $-x$, that is, $f(x)=f(-x)$.
Answer: i) $f:]-1,[\rightarrow R, f(x)=x$; ii) $f:]-1,\left[\left[\rightarrow[0,1), f(x)=x^{2}\right.\right.$.

