Answer on Question \#66202 - Math - Calculus

Question

Show that $\lim _{x \rightarrow \infty}\left(\frac{2}{x-3}\right)=0$

Solution

Dividing the numerator and denominator in

$$
\lim _{x \rightarrow \infty}\left(\frac{2}{x-3}\right)
$$

by x we obtain

$$
\lim _{x \rightarrow \infty}\left(\frac{2 \frac{1}{x}}{1-\frac{3}{x}}\right)
$$

Introducing a new variable

$$
u=\frac{1}{x^{\prime}} \text { so } u \rightarrow 0 \text { as } x \rightarrow \infty,
$$

evaluate

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{2 \frac{1}{x}}{1-\frac{3}{x}}\right) & =\lim _{u \rightarrow 0}\left(\frac{2 u}{-3 u+1}\right)=\frac{\lim _{u \rightarrow 0} 2 u}{\lim _{u \rightarrow 0}(-3 u+1)}=\frac{2 \lim _{u \rightarrow 0} u}{-3 \lim _{u \rightarrow 0} u+1}=\frac{2 \cdot 0}{-3 \cdot 0+1}=\frac{0}{-0+1} \\
& =0
\end{aligned}
$$

We get

$$
\lim _{x \rightarrow \infty}\left(\frac{2}{x-3}\right)=0
$$

Answer: 0.

