Answer on Question \#66201 - Math - Calculus

Question

Find the volume and surface area of the solid formed by revolving a right-angled triangle about a side adjacent to the right angle. What is the solid so obtained?

Solution

When right-angled triangle is revolved about a side adjacent to the right angle, a cone with height h, radius r, and slant height l will be formed.

$x=-\frac{r}{h} y+r, l^{2}=h^{2}+r^{2}$.
Then the volume of the solid formed by revolving a right-angled triangle about a side adjacent to the right angle is
$V=\pi \int_{0}^{h} x^{2} d y=\pi \int_{0}^{h}\left(-\frac{r}{h} y+r\right)^{2} d y=\pi \int_{0}^{h}\left(\frac{r^{2}}{h^{2}} y^{2}-2 \frac{r}{h} y+r^{2}\right) d y=$
$=\left.\pi\left(\frac{r^{2}}{3 h^{2}} y^{3}-\frac{r}{h} y^{2}+r^{2} y\right)\right|_{0} ^{h}=\pi\left(\frac{r^{2}}{3 h^{2}} h^{3}-\frac{r}{h} h^{2}+r^{2} h-0\right)=\frac{1}{3} \pi r^{2} h$
Thus,

$$
V=\frac{1}{3} \pi r^{2} h
$$

The surface area of the cone equals the area of its base plus the lateral (side) surface.
$S_{\text {lateral }}=\int_{0}^{h} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{h} 2 \pi\left(-\frac{r}{h} y+r\right) \sqrt{1+\left(-\frac{r}{h}\right)^{2}} d y=$
$=\int_{0}^{h} 2 \pi \frac{\sqrt{h^{2}+r^{2}}}{h}\left(-\frac{r}{h} y+r\right) d y=\left.2 \pi \frac{\sqrt{h^{2}+r^{2}}}{h}\left(-\frac{r}{2 h} y^{2}+r y\right)\right|_{0} ^{h}=$
$=2 \pi \frac{\sqrt{h^{2}+r^{2}}}{h}\left(-\frac{r}{2 h} h^{2}+r h-0\right)=\pi r \sqrt{h^{2}+r^{2}}=\pi r l$
$S_{\text {base }}=\pi r^{2}$.
The surface area of the cone equals
$S=S_{\text {lateral }}+S_{\text {base }}=\pi r^{2}+\pi r l$
Thus,

$$
S=\pi r^{2}+\pi r l
$$

Answer: $V=\frac{1}{3} \pi r^{2} h, S=\pi r^{2}+\pi r l$.

