Answer on Question \#66192 - Math - Calculus

Question

Sketch the graph of the function f defined by $f(x)=x^{2}+8 x$, clearly giving all the properties used in it.

Solution

$$
\begin{gathered}
x^{2}+8 x=\left(x^{2}+8 x+16\right)-16=(x+4)^{2}-16 \\
f(x)=(x+4)^{2}-16
\end{gathered}
$$

This is a vertical parabola, opens up, because the coefficient $a=1$ near x^{2} is positive.
The properties are as follows:
vertex is $(-4,-16)$;
minimum value is $f(-4)=-16$;
$f(x)$ is decreasing on $(-\infty,-4) ; f(x)$ is incresing on $(-4, \infty)$;

$$
\text { symmetry: line } x=-4 ;
$$

$$
\begin{gathered}
x^{2}+8 x=0 \\
x(x+8)=0 \\
x=0 \text { or } x=-8 ; \\
\mathrm{x}-\text { intercepts are }(0,0),(-8,0) ; \\
f(0)=0^{2}+8 \cdot 0=0 ; \\
\mathrm{y}-\text { intercept is }(0,0) ;
\end{gathered}
$$

the focus is $F=\left(-4,-\frac{63}{4}\right)$;

$$
\text { the directrix is } y=-\frac{65}{4} \text {. }
$$

