Answer on Question \#66190 - Math - Calculus

1. Which of the following statements are true or false? Give reasons for your answers.

Question

i) The function $f: R \rightarrow R$, given by $f(x)=\ln \left|x+\sqrt{1+x^{2}}\right|$ is neither even nor odd.

Solution

Indeed, $f(-x)=\ln \left|-x+\sqrt{1+(-x)^{2}}\right|=\ln \left|-x+\sqrt{1+x^{2}}\right|$ and neither $f(-x)=f(x)$ nor $f(-x)=-f(x)$, so f is neither even nor odd.

Answer: True.

Question

ii) $\quad \frac{d}{d x} \int_{x}^{0} \sin \left(t^{2}\right) d t=-\sin x^{2}$.

Solution

Indeed, if $F(t)$ is some primitive for $f(t)=\sin t^{2}$, then by formula of Newton-Leibniz $\int_{x}^{0} \sin \left(t^{2}\right) d t=F(0)-F(x)$.

Therefore,

$$
\frac{d}{d x} \int_{x}^{0} \sin \left(t^{2}\right) d t=\frac{d}{d x}(F(0)-F(x))=-F^{\prime}(x)=-\sin x^{2} .
$$

Answer: True.

Question

iii) The area enclosed by the x-axis and the curve $y=\cos x$ over the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ is 0 .

Solution

The area enclosed by the x-axis and the curve $y=\cos x$ over the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ is calculated by formula

$$
\begin{gathered}
A=\int_{-\pi / 2}^{\pi / 2}(\cos x-0) d x+\int_{\pi / 2}^{3 \pi / 2}(0-\cos x) d x=\left.\sin x\right|_{-\pi / 2} ^{\pi / 2}-\left.\sin x\right|_{\pi / 2} ^{3 \pi / 2} \\
=(1-(-1))-(-1-1)=2+2=4
\end{gathered}
$$

Answer: False

Question

iv) If f and g are functions over R such that $f+g$ is continuous, then f must be continuous.

Solution

The counterexample can be the following:
$f(x)=\left\{\begin{array}{ll}0, & x<0, \\ 1, & x \geq 0 ;\end{array}\right.$ and $g(x)= \begin{cases}1, & x<0, \\ 0, & x \geq 0 .\end{cases}$
Then $f(x)+g(x)=1$ for all $x \in R$ and therefore $f+g$ is continuous on R but f is not continuous at the point 0 .

Answer: False

Question

v) $\quad x-y+2=0$ is a tangent to the curve $(x+y)^{3}=(x-y+2)^{2}$ at $(-1,1)$.

Solution

Let us consider the function

$$
F(x, y)=(x+y)^{3}-(x-y+2)^{2} .
$$

We search for the derivative of the implicit function $y=y(x)$ at the point $(-1,1)$ given by the equation

$$
F(x, y)=0 .
$$

We have

$$
F^{\prime} y(x, y)=3(x+y)^{2}+2(x-y+2)
$$

Then

$$
F_{y}^{\prime}(-1,1)=0,
$$

and therefore $y^{\prime}(-1)$ is undefined. Hence the line $x-y+2=0$ cannot be a tangent to the curve. We also can show that $(-1,1)$ is a turning point of the curve, hence $x-y+2=0$ is not a tangent to the curve $(x+y)^{3}=(x-y+2)^{2}$ at $(-1,1)$.

Let us make the linear change of variables $\mathrm{z}=x+y, t=x-y+2$, which the point $(-1,1)$ moves to the origin $(0,0)$. Then in new variables the curve is given by the equation $z^{3}=t^{2}$. This equation describes the semicubical parabola, which has a turning point at the origin.

Answer: False.

