Answer on Question \#66150 - Math - Differential Equations

Question

Solve the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x^{m}
$$

for all positive integer values of m.

Solution

We have the differential equation (DE)

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x^{m}
$$

This is the Euler equation. Change the variable x by t :

$$
x=e^{t}, \quad t=\ln x, \quad(x>0)
$$

Express the derivatives with respect to x in terms of the derivatives with respect to t :

$$
\begin{gathered}
\frac{d}{d x}=\frac{d}{d t} \frac{d t}{d x}=\frac{d \ln x}{d x} \frac{d}{d t}=\frac{1}{x} \frac{d}{d t}=e^{-t} \frac{d}{d t} \\
\frac{d^{2}}{d x^{2}}=\frac{d}{d x}\left(\frac{d}{d x}\right)=e^{-t} \frac{d}{d t}\left(e^{-t} \frac{d}{d t}\right)=e^{-2 t} \frac{d^{2}}{d t^{2}}-e^{-2 t} \frac{d}{d t}
\end{gathered}
$$

Substituting in the equation we get

$$
\begin{gather*}
e^{2 t}\left(e^{-2 t} \frac{d^{2} y}{d t^{2}}-e^{-2 t} \frac{d y}{d t}\right)+e^{t} e^{-t} \frac{d y}{d t}+y=e^{m t} \\
\frac{d^{2} y}{d t^{2}}+y=e^{m t} \tag{1}
\end{gather*}
$$

To solve a nonhomogeneous linear differential equation (1) we must do the following steps:

1) find the complementary function y_{c} that is the general solution of the associated homogeneous DE

$$
\frac{d^{2} y}{d t^{2}}+y=0
$$

2) find any particular solution y_{p} of the nonhomogeneous equation

$$
\frac{d^{2} y}{d t^{2}}+y=e^{m t}
$$

The solution of the associated homogeneous DE is

$$
y_{c}=C_{1} \cos t+C_{2} \sin t
$$

where C_{1} and C_{2} are arbitrary real constants.
Assume for the particular solution

$$
y_{p}=A e^{m t}
$$

Substituting y_{p} into the given differential equation (1), we get

$$
\frac{d^{2} y}{d t^{2}}+y=A m^{2} e^{m t}+A e^{m t}=e^{m t}
$$

that is,

$$
A m^{2}+A=1
$$

hence

$$
A=\frac{1}{m^{2}+1} .
$$

Then

$$
y_{p}=\frac{1}{m^{2}+1} e^{m t} .
$$

The general solution of the nonhomogeneous equation is

$$
y=C_{1} \cos t+C_{2} \sin t+\frac{1}{m^{2}+1} e^{m t}
$$

Substituting $t=\ln x$ we get

$$
y=C_{1} \cos (\ln x)+C_{2} \sin (\ln x)+\frac{1}{m^{2}+1} x^{m}
$$

Answer:

$$
y=C_{1} \cos (\ln x)+C_{2} \sin (\ln x)+\frac{1}{m^{2}+1} x^{m}
$$

