Answer on Question 66149-Math - Calculus

Question: Find the integrating factor of the differential equation

$$
\left(6 x y-3 y^{2}+2 y\right) d x+2(x-y) d y=0
$$

and hence solve it.
Solution: Set $P(x, y)=6 x y-3 y^{2}+2 y$ and $Q(x, y)=2(x-y)$. The equation

$$
\left(6 x y-3 y^{2}+2 y\right) d x+2(x-y) d y=0
$$

is not exact, because

$$
\frac{\partial}{\partial y} P(x, y) \neq \frac{\partial}{\partial x} Q(x, y) .
$$

Indeed,

$$
\begin{gathered}
\frac{\partial P}{\partial y}(x, y)=\frac{\partial}{\partial y}\left(6 x y-3 y^{2}+2 y\right)=6 x-6 y+2, \\
\frac{\partial Q}{\partial x}(x, y)=\frac{\partial}{\partial x}(2 x-2 y)=2 .
\end{gathered}
$$

Nevertheless, the equation can be turned into in an exact equation if it is multiplied by the correct integrating factor.

Suppose that there exists an integrating factor I that depends only on x. Then I is a solution of the equation

$$
\frac{d I}{d x}=\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) I .
$$

This equation will have a solution that depends only on x provided that

$$
\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)
$$

depends only on x. For our equation we have

$$
\frac{1}{Q(x, y)}\left(\frac{\partial P}{\partial y}(x, y)-\frac{\partial Q}{\partial x}(x, y)\right)=\frac{6 x-6 y+2-2}{2(x-y)}=\frac{6(x-y)}{2(x-y)}=3 .
$$

Hence, I is a solution of the equation $I^{\prime}=3 I$, and $I(x)=e^{3 x}$. Multiplying the equation by $e^{3 x}$ yields

$$
\left(6 x y-3 y^{2}+2 y\right) e^{3 x} d x+2(x-y) e^{3 x} d y=0,
$$

which is now exact, since

$$
\frac{\partial}{\partial y}\left\{\left(6 x y-3 y^{2}+2 y\right) e^{3 x}\right\}=(6 x-6 y+2) e^{3 x}=\frac{\partial}{\partial x}\left\{2(x-y) e^{3 x}\right\}
$$

To find the potential $U(x, y)$, we first integrate

$$
\frac{\partial U}{\partial x}=\left(6 x y-3 y^{2}+2 y\right) e^{3 x}
$$

partially with respect to x to give

$$
U(x, y)=\left(2 x y-y^{2}\right) e^{3 x}+\alpha(y)
$$

Indeed,

$$
\begin{aligned}
& \int\left(6 x y-3 y^{2}+2 y\right) e^{3 x} d x=6 y \int x e^{3 x} d x-\left(3 y^{2}-2 y\right) \int e^{3 x} d x \\
= & 2 y \int x d e^{3 x}-\frac{3 y^{2}-2 y}{3} e^{3 x}=2 x y e^{3 x}-2 y \int e^{3 x} d x-y^{2} e^{3 x}+\frac{2}{3} y e^{3 x}+\alpha(y) \\
= & 2 x y e^{3 x}-\frac{2}{3} y e^{3 x}-y^{2} e^{3 x}+\frac{2}{3} y e^{3 x}+\alpha(y)=\left(2 x y-y^{2}\right) e^{3 x}+\alpha(y) .
\end{aligned}
$$

To fix $\alpha(y)$ we differentiate U partially with respect to y, and substitute the result into equality $\frac{\partial U}{\partial y}=Q$,

$$
\frac{\partial U}{\partial y}=(2 x-2 y) e^{3 x}+\alpha^{\prime}(y)=2(x-y) e^{3 x} .
$$

We therefore have $\alpha^{\prime}(y)=0$ and $\alpha(y)=C$. So we finally have our solution $y(2 x-y) e^{3 x}=C$.

Answer: The integrating factor is $e^{3 x}$. The general solution in the implicit form is $y(2 x-y) e^{3 x}=C$.

