Answer on Question 66146 - Math - Calculus

Solve, using the method of variation of parameters 2%’ —y= H%

Solution

Let us first solve the corresponding homogenous linear differential
equation

d*y
a2 Y=Y
The characteristic equation A> — 1 = 0 has two roots \; = —1 and

Ao = 1. Consequently, the pair of functions e and e” is a fundamental
system of solutions and therefore the general solution has the form

Yy = C’le_w + 0263:,
where C; and C5 are arbitrary real constants.
By the method of variation of parameters, we look for a partial
solution of the non-homogenous equation in the form
Yy = ar(x)e”" + ag(z)e” (1)
with unknown functions a; and as. The derivatives of aq, as can be
found as a solution of the system
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Using Cramer’s rule we solve the system
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Then we have
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As aresult, oy (z) = —z — Inle™* + 1].
Next,
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—t+Injt+1]=—e“+Inle ™+ 1].

Substituting «j, as into (1) gives the partial solution of the non-

homogenous equation
U = (e* —e ) In(l+ e ") —ze ™ — 1.
Finally we have the general solution of the non-homogenous equation

y=0Ce "+ Coe" 4+ (" —e ) In(l+e") —ze ™ — 1.

Answer: y=Cle ™ +Coe” + (e* —e ) In(l +e*) —ze ™ —1
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