Answer on Question 66146-Math - Calculus

Solve, using the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$.

Solution

Let us first solve the corresponding homogenous linear differential equation

$$
\frac{d^{2} y}{d x^{2}}-y=0
$$

The characteristic equation $\lambda^{2}-1=0$ has two roots $\lambda_{1}=-1$ and $\lambda_{2}=1$. Consequently, the pair of functions e^{-x} and e^{x} is a fundamental system of solutions and therefore the general solution has the form

$$
y=C_{1} e^{-x}+C_{2} e^{x},
$$

where C_{1} and C_{2} are arbitrary real constants.
By the method of variation of parameters, we look for a partial solution of the non-homogenous equation in the form

$$
\begin{equation*}
y_{*}=\alpha_{1}(x) e^{-x}+\alpha_{2}(x) e^{x} \tag{1}
\end{equation*}
$$

with unknown functions α_{1} and α_{2}. The derivatives of α_{1}, α_{2} can be found as a solution of the system

$$
\left(\begin{array}{cc}
e^{-x} & e^{x} \\
-e^{-x} & e^{x}
\end{array}\right)\binom{\alpha_{1}^{\prime}}{\alpha_{2}^{\prime}}=\binom{0}{\frac{2}{1+e^{x}}} .
$$

Using Cramer's rule we solve the system

$$
\begin{aligned}
& \Delta(x)=\left|\begin{array}{cc}
e^{-x} & e^{x} \\
-e^{-x} & e^{x}
\end{array}\right|=e^{-x} e^{x}+e^{-x} e^{x}=2 \\
& \Delta_{1}(x)=\left|\begin{array}{cc}
0 & e^{x} \\
\frac{2}{1+e^{x}} & e^{x}
\end{array}\right|=-\frac{2 e^{x}}{1+e^{x}}, \\
& \Delta_{2}(x)=\left|\begin{array}{cc}
e^{-x} & 0 \\
-e^{-x} & \frac{2}{1+e^{x}}
\end{array}\right|=\frac{2 e^{-x}}{1+e^{x}} ; \\
& \alpha_{1}^{\prime}(x)=\frac{\Delta_{1}(x)}{\Delta(x)}=-\frac{e^{x}}{1+e^{x}}, \quad \alpha_{2}^{\prime}(x)=\frac{\Delta_{2}(x)}{\Delta(x)}=\frac{e^{-x}}{1+e^{x}} .
\end{aligned}
$$

Then we have

$$
\alpha_{1}(x)=-\int \frac{e^{x}}{1+e^{x}} d x=-\int\left(1-\frac{1}{1+e^{x}}\right) d x=-x+\int \frac{d x}{1+e^{x}}
$$

and

$$
\begin{array}{r}
\int \frac{d x}{1+e^{x}}=\left[\begin{array}{c}
e^{-x}=t \\
x=-\ln t \\
d x=-\frac{1}{t} d t
\end{array}\right]=-\int \frac{d t}{t\left(1+\frac{1}{t}\right)}=-\int \frac{d t}{t+1}=-\ln |t+1| \\
=-\ln \left|e^{-x}+1\right|
\end{array}
$$

As a result, $\alpha_{1}(x)=-x-\ln \left|e^{-x}+1\right|$.
Next,

$$
\begin{gathered}
\alpha_{2}(x)=\int \frac{e^{-x}}{1+e^{x}} d x=-\int \frac{d e^{-x}}{1+e^{x}}=\left[e^{-x}=t\right]=-\int \frac{d t}{1+\frac{1}{t}} \\
=-\int \frac{t d t}{t+1}=-\int\left(1-\frac{1}{t+1}\right) d t \\
=-t+\ln |t+1|=-e^{-x}+\ln \left|e^{-x}+1\right| .
\end{gathered}
$$

Substituting α_{1}, α_{2} into (1) gives the partial solution of the nonhomogenous equation

$$
y_{*}=\left(e^{x}-e^{-x}\right) \ln \left(1+e^{-x}\right)-x e^{-x}-1 .
$$

Finally we have the general solution of the non-homogenous equation

$$
y=C_{1} e^{-x}+C_{2} e^{x}+\left(e^{x}-e^{-x}\right) \ln \left(1+e^{-x}\right)-x e^{-x}-1
$$

Answer: $y=C_{1} e^{-x}+C_{2} e^{x}+\left(e^{x}-e^{-x}\right) \ln \left(1+e^{-x}\right)-x e^{-x}-1$.

