ANSWER ON QUESTION \#66145 - Math - Differential Equations

QUESTION

Given that $y_{1}=\frac{1}{x}$ is one solution of the differential equation

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0, x>0
$$

find a second linearly independent solution of the equation.

SOLUTION

We transform the original equation to the form

$$
\begin{gather*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \\
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0 \left\lvert\,: \frac{1}{2 x^{2}} \rightarrow y^{\prime \prime}+\frac{3 x}{2 x^{2}} y^{\prime}-\frac{y}{2 x^{2}}=0\right. \\
y^{\prime \prime}+\underbrace{\frac{3}{2 x}}_{p(x)} y^{\prime} \underbrace{-\frac{1}{2 x^{2}}}_{q(x)} y=0 \tag{1}
\end{gather*}
$$

$y_{1}(x)=\frac{1}{x}$ is the first solution of the differential equation
Using the Liouville formula (https://en.wikipedia.org/wiki/Liouville\'s formula) we can find a second solution:

$$
\begin{aligned}
& y_{2}(x)=y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x=\frac{1}{x} \int \frac{e^{-\int \frac{3}{2 x} d x}}{\frac{1}{x^{2}}} d x=\frac{1}{x} \int x^{2} e^{-\frac{3}{2} \ln (x)} d x \\
& =\frac{1}{x} \int x^{2} e^{\ln \left(x^{-\frac{3}{2}}\right)} d x=\frac{1}{x} \int x^{2} x^{-\frac{3}{2}} d x=\frac{1}{x} \int x^{2-\frac{3}{2}} d x=\frac{1}{x} \int x^{\frac{1}{2}} d x
\end{aligned}
$$

$=\frac{1}{x} \cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\frac{1}{x} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}=\frac{2}{3} \cdot \frac{x^{\frac{3}{2}}}{x}=\frac{2}{3} \cdot x^{\frac{1}{2}} \equiv \frac{2 \sqrt{x}}{3}$

ANSWER:

$y_{2}(x)=\frac{2 \sqrt{x}}{3}$ is a second linearly independent solution of the equation

