Answer on Question \#66142 - Math - Differential Equations

Question

Write the ordinary differential equation $y d x+(x y+x-3 y) d y=0$ in the linear form, and hence find its solution

Solution

We have the differential equation

$$
\begin{equation*}
y d x+(x y+x-3 y) d y=0 \tag{1}
\end{equation*}
$$

Dividing equation (1) by $y d y$ we get

$$
\begin{equation*}
\frac{d x}{d y}+\left(1+\frac{1}{y}\right) x=3 \tag{2}
\end{equation*}
$$

This equation (2) has the linear form:

$$
\begin{equation*}
\frac{d x}{d y}+P(y) x=Q(y) \tag{3}
\end{equation*}
$$

We need to multiply both sides by the integrating factor

$$
I(y)=\exp \left(\int P(y) d y\right)
$$

and integrate both sides. For this problem we have

$$
I(y)=\exp \left(\int\left(1+\frac{1}{y}\right) d y\right)=\exp (y+\ln y)=y e^{y}
$$

Multiplying both sides of the differential equation (2) by $y e^{y}$, we get

$$
y e^{y} \frac{d x}{d y}+y e^{y}\left(1+\frac{1}{y}\right) x=3 y e^{y}
$$

or

$$
y e^{y} \frac{d x}{d y}+e^{y}(y+1) x=3 y e^{y}
$$

or

$$
\frac{d}{d y}\left(x y e^{y}\right)=3 y e^{y}
$$

Integrating both sides, we get

$$
x y e^{y}=3 \int y e^{y} d y=3\left(y e^{y}-\int e^{y} d y\right)=3\left(y e^{y}-e^{y}\right)+C
$$

Dividing equation by $y e^{y}$, we get a solution of the initial equation

$$
x=3\left(1-\frac{1}{y}\right)+\frac{C}{y} e^{-y}
$$

Answer: $\frac{d x}{d y}+\left(1+\frac{1}{y}\right) x=3 \quad ; x=3\left(1-\frac{1}{y}\right)+\frac{c}{y} e^{-y}$.

Answer provided by https://www.AssignmentExpert.com

