Answer on Question \#66108 - Math - Differential Equations

Question

The pde $u x x+x^{\wedge} 2$ uxy $-\left(x^{\wedge} 2 / 2+1 / 4\right)$ uyy $=0$ is hyperbolic in the entire $x y$-plane. true or false, why?

Solution

We have

$$
\begin{equation*}
u_{x x}+x^{2} u_{x y}-\left(\frac{x^{2}}{2}+\frac{1}{4}\right) u_{y y}=0 \tag{1}
\end{equation*}
$$

which is a particular case of the linear second-order partial differential equation

$$
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F=0
$$

where coefficients A, B, C, D, E and free term F in general are functions of the independent variables x, y, but do not depend on the unknown function u.
This equation is said to be hyperbolic if [1, page 435]

$$
\begin{equation*}
B^{2}-4 A C>0 \tag{2}
\end{equation*}
$$

For the given equation (1)

$$
A=1, B=x^{2}, C=-\left(\frac{x^{2}}{2}+\frac{1}{4}\right), \quad D=E=F=0
$$

Substituting values A, B, C in (2) we get

$$
B^{2}-4 A C=x^{4}+4\left(\frac{x^{2}}{2}+\frac{1}{4}\right)=x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}>0
$$

This inequality holds for any x. Thus, this equation is hyperbolic in the entire $x y$-plane.

Answer: True. The pde $u_{x x}+x^{2} u_{x y}-\left(\frac{x^{2}}{2}+\frac{1}{4}\right) u_{y y}=0$ is hyperbolic in the entire $x y$-plane.

References:

[1] Dennis G. Zill, Michael R. Cullen. Differential equations, seventh edition.

