Answer on Question \#66105 - Math - Calculus

Question

The initial value problem

$$
\frac{d y}{d x}=x^{2}+y^{2} ; y(0)=0
$$

has a unique solution in some interval of the form $-h<x<h$.
True or false, why?

Solution

Existence and Uniqueness Theorem for First Order ODE's [1, page 150]:
Let R be a rectangle and let $f(x, y)$ be continuous throughout R and satisfy the Lipschitz Condition with respect to y throughout R. Let $\left(x_{0}, y_{0}\right)$ be an interior point of R. Then there exists an interval containing x_{0} on which there exists a unique function $y(x)$ satisfying $y^{\prime}=f(x, y)$ and $y\left(x_{0}\right)=y_{0}$.

We have
$f(x, y)=x^{2}+y^{2} ; \quad \frac{d f}{d y}=2 y$,
hence $f(x, y)$ has a continuous derivative with respect to y, therefore $f(x, y)$ satisfies the Lipschitz Condition with respect to y throughout rectangle R [2, Proposition 1].

Since $f(x, y)$ satisfies the conditions of Existence and Uniqueness Theorem, the initial value problem

$$
\frac{d y}{d x}=x^{2}+y^{2} ; y(0)=0
$$

has a unique solution in some interval of the form $-h<x<h$.
Answer: true.

References:

[1] Differential Equations I, MATB44H3F, Version September 15, 2011-1949.
[2] Lipschitz condition and differentiability. Retrieved from http://planetmath.org/lipschitzconditionanddifferentiability

