Answer on Question \#66095 - Math - Calculus

Question

Find the moment of inertia 12 for the solid above the $x y$-plane bounded by the paraboloid $z=x^{\wedge} 2+y^{\wedge} 2$ and the cylinder $x^{\wedge} 2+y^{\wedge} 2=9$ assuming the mean density to be constant C.

Solution

The moment of inertia of the mass

$$
\Delta m_{k}=\rho\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}
$$

where $\rho\left(x_{k}, y_{k}, z_{k}\right)$ is the density of an object occupying a region D in space (mass per unit volume), above the $x y$-plane is approximately [1, page 1109]

$$
\Delta I_{k}=z^{2}\left(x_{k}, y_{k}, z_{k}\right) \Delta m_{k}=z^{2}\left(x_{k}, y_{k}, z_{k}\right) \rho\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}
$$

where $z\left(x_{k}, y_{k}, z_{k}\right)$ is the distance from the point $\left(x_{k}, y_{k}, z_{k}\right)$ in D to a $x y$-plane.
The moment of inertia above the $x y$-plane of the entire object is [1, page 1109; 2]
$I=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \Delta I_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} z^{2}\left(x_{k}, y_{k}, z_{k}\right) \rho\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}=\iiint_{D} z^{2} \rho d V=C \iiint_{D} z^{2} d V$ since $\rho=C$. The region of integration D is bounded by surfaces $z=x^{2}+y^{2}$ and $x^{2}+y^{2}=9$. The cross section of this solid is shown in the figure.

Write this integral using cylindrical coordinates. The limits of integration with respect to z are $z=0$ and $z=r^{2}$. The limits of integration with respect to r are 0 and 3

$$
\begin{aligned}
& I=C \int_{0}^{2 \pi}\left(\int_{0}^{3}\left(\int_{0}^{r^{2}} z^{2} d z\right) r d r\right) d \theta=C \int_{0}^{2 \pi}\left(\left.\int_{0}^{3} \frac{z^{3}}{3}\right|_{0} ^{r^{2}} r d r\right) d \theta=\frac{C}{3} \int_{0}^{2 \pi}\left(\int_{0}^{3}\left(r^{6}-0\right) r d r\right) d \theta= \\
= & \frac{C}{3} \int_{0}^{2 \pi}\left(\int_{0}^{3} r^{7} d r\right) d \theta==\left.\frac{C}{3} \int_{0}^{2 \pi} \frac{r^{8}}{8}\right|_{0} ^{3} d \theta=\frac{C}{24} \int_{0}^{2 \pi}\left(3^{8}-0\right) d \theta=\frac{C}{24} \cdot 3^{8} \cdot 2 \pi=546.75 \pi C .
\end{aligned}
$$

Answer: the moment of inertia is $I=546.75 \pi C$

References:

[1] George B. Thomas, Maurice D. Weir, Joel Hass, Frank R. Giordano. Thomas' Calculus $11^{\text {th }}$ Edition.
[2] Area Moments of Inertia by Integration. Retrieved from www.iitg.ac.in/kd/Lecture\ Notes/ME101-Lecture18-KD.pdf

Answer provided by https://www.AssignmentExpert.com

