
 

 

Answer on Question #66095 – Math – Calculus 
 

Question 
Find the moment of inertia I2 for the solid above the xy-plane bounded by the paraboloid z=x^2+y^2 

and the cylinder x^2+y^2 =9 assuming the mean density to be constant C. 
 

Solution 
The moment of inertia of the mass 

Δ𝑚𝑘 = 𝜌(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)Δ𝑉𝑘 
where 𝜌(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)is the density of an object occupying a region D in space (mass per unit 
volume), above the 𝑥𝑦 -plane is approximately [1, page 1109] 

Δ𝐼𝑘 = 𝑧2(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)Δ𝑚𝑘 = 𝑧2(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)𝜌(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)Δ𝑉𝑘 
where 𝑧(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) is the distance from the point (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) in D to a 𝑥𝑦 -plane.  

The moment of inertia above the 𝑥𝑦 -plane of the entire object is [1, page 1109; 2] 
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 since 𝜌 = 𝐶. The region of integration 𝐷 is bounded by surfaces 𝑧 = 𝑥2 + 𝑦2 and 𝑥2 + 𝑦2 = 9. 
The cross section of this solid is shown in the figure.  

 
Write this integral using cylindrical coordinates. The limits of integration with respect to 𝑧 are 
𝑧 = 0 and 𝑧 = 𝑟2. The limits of integration with respect to 𝑟 are 0 and 3 
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⋅ 38 ⋅ 2𝜋 = 546.75𝜋𝐶. 

Answer: the moment of inertia is 𝐼 = 546.75𝜋𝐶  
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