Answer on Question \#66086 - Math - Calculus
 Question

A torus (a dough nut-shaped object) is formed by revolving the circle $x^{\wedge} 2+y^{\wedge} 2=a^{\wedge} 2$ about the vertical line $x=b$, where $0<a<b$. Find its volume.

Solution

To find the volume of the torus we use the washer method [1, page 356]. A cross-section in the plane P (see figure) has the shape of a washer (an annular ring) with inner radius

$$
r_{i n}=b-\sqrt{a^{2}-y^{2}}
$$

and outer radius

$$
r_{\text {out }}=b+\sqrt{a^{2}-y^{2}}
$$

so we find the cross-sectional area by subtracting the area of the inner circle from the area of the outer circle:

$$
\begin{gathered}
A(y)=\pi\left(b+\sqrt{a^{2}-y^{2}}\right)^{2}-\pi\left(b-\sqrt{a^{2}-y^{2}}\right)^{2}= \\
=\pi\left(b^{2}+2 b \sqrt{a^{2}-y^{2}}+a^{2}-y^{2}\right)-\pi\left(b^{2}-2 b \sqrt{a^{2}-y^{2}}+a^{2}-y^{2}\right)=4 \pi b \sqrt{a^{2}-y^{2}}
\end{gathered}
$$

The required volume is

$$
V=\int_{-a}^{a} A(y) d y=\int_{-a}^{a} 4 \pi b \sqrt{a^{2}-y^{2}} d y=8 \pi b \int_{0}^{a} \sqrt{a^{2}-y^{2}} d y
$$

This integral can be evaluated by using a trigonometrical substitution $y=a \sin \theta$
$V=8 \pi b \int_{0}^{\pi / 2} \sqrt{a^{2}-a^{2} \sin ^{2} \theta} d(a \sin \theta)=8 \pi a^{2} b \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=4 \pi a^{2} b \int_{0}^{\pi / 2}(1+$ $\cos 2 \theta) d \theta=$

$$
4 \pi a^{2} b \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta=\left.4 \pi a^{2} b\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi / 2}=2 \pi^{2} a^{2} b
$$

Answer: the volume of the torus is $V=2 \pi^{2} a^{2} b$.

Reference:

[1]. James Stewart. Calculus, 7th Edition.

Answer provided by https://www.AssignmentExpert.com

