Answer on Question \#66045 - Math - Calculus

Question

Prove that the functions $g(x, y)=2 x-3 y / 4 x+5 y$ and $h(x, y)=x / y, y \neq 0, y \neq-4 / 5 x x$ are functionally dependent

Solution

By definition, two functions $g(x, y)$ and $h(x, y)$ are said to be functionally dependent if they are functions of each other [1, page 214]. The necessary and sufficient conditions for the functional dependent of two functions is the vanishing of their Jacobian [1, page 214], i.e.

$$
\left|\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial h}{\partial x} \\
\frac{\partial g}{\partial y} & \frac{\partial h}{\partial y}
\end{array}\right|=0 .
$$

Using the Quotient Rule [2, page 132] find the partial derivatives of $g(x, y)=\frac{2 x-3 y}{4 x+5 y}$ and $h(x, y)=\frac{x}{y}$.

$$
\begin{gathered}
\frac{\partial g}{\partial x}=\left(\frac{2 x-3 y}{4 x+5 y}\right)_{x}=\frac{2(4 x+5 y)-4(2 x-3 y)}{(4 x+5 y)^{2}}=\frac{8 x+10 y-8 x+12 y}{(4 x+5 y)^{2}}=\frac{22 y}{(4 x+5 y)^{2}}, \\
\frac{\partial g}{\partial y}=\left(\frac{2 x-3 y}{4 x+5 y}\right)_{y}=\frac{-3(4 x+5 y)-5(2 x-3 y)}{(4 x+5 y)^{2}}=\frac{-12 x-15 y-10 x+15 y}{(4 x+5 y)^{2}}=-\frac{22 x}{(4 x+5 y)^{2}}, \\
\frac{\partial h}{\partial x}=\frac{1}{y^{\prime}}, \\
\frac{\partial h}{\partial y}=-\frac{x}{y^{2}} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\left|\begin{array}{cc}
\frac{\partial g}{\partial x} & \frac{\partial h}{\partial x} \\
\frac{\partial g}{\partial y} & \frac{\partial h}{\partial y}
\end{array}\right|=\frac{\partial g}{\partial x} \frac{\partial h}{\partial y}- \\
-\frac{\partial h}{\partial x} \frac{\partial g}{\partial y}=\frac{22 y}{(4 x+5 y)^{2}}\left(-\frac{x}{y^{2}}\right)-\left(-\frac{22 x}{(4 x+5 y)^{2}}\right) \frac{1}{y}= \\
=-\frac{22 x}{y(4 x+5 y)^{2}}+\frac{22 x}{y(4 x+5 y)^{2}}=0
\end{gathered}
$$

Since the Jacobian of these functions is equal to zero, then the functions $g(x, y)$ and $h(x, y)$ are functionally dependent.
Answer: functions $g(x, y)$ and $h(x, y)$ are functionally dependent.

References:

[1] S.S. Sastry. Engineering mathematics, volume two, $4^{\text {th }}$ Edition
[2] James Stewart. Calculus, 7th Edition.

