Answer on Question \#66044 - Math - Calculus

Question

Find the values of a and b for which the following limit exists: $\lim _{x \rightarrow 0} \frac{a e^{x}+e^{-x}+b x}{1-\cos x}$.

Solution

Obviously the limit of the denominator is

$$
\left.(1-\cos x)\right|_{x=0}=1-\cos (0)=0
$$

Then the limit of the numerator also must be equal to zero.
On the other hand, the limit of numerator is

$$
\left.\left(a e^{x}+e^{-x}+b x\right)\right|_{x=0}=a e^{0}+e^{-0}+b \cdot 0=a+1
$$

Then we have

$$
a+1=0 \Leftrightarrow a=-1 \text {. }
$$

We have the following limit:

$$
\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+b x}{1-\cos x} .
$$

Let us compute it using L'Hôpital's rule (see https://en.wikipedia.org/wiki/L'Hôpital's rule):

$$
\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+b x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{\left(-e^{x}+e^{-x}+b x\right)^{\prime}}{(1-\cos x)^{\prime}}=\lim _{x \rightarrow 0} \frac{-e^{x}-e^{-x}+b}{\sin x} .
$$

The limit of denominator is equal to 0 again.
Then we obtain the following condition:

$$
\left.\left(-e^{x}-e^{-x}+b\right)\right|_{x=0}=-e^{0}-e^{-0}+b=0 \Leftrightarrow-2+b=0 \Leftrightarrow b=2 .
$$

So we get

$$
\left\{\begin{array}{c}
a=-1 \\
b=2
\end{array}\right.
$$

Let us check that the original limit exists using L'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+2 x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{\left(-e^{x}+e^{-x}+2 x\right)^{\prime}}{(1-\cos x)^{\prime}}=\lim _{x \rightarrow 0} \frac{-e^{x}-e^{-x}+2}{\sin x}=\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}}{\cos x}=\frac{-1+1}{1}=0<\infty .
$$

Answer: $\left\{\begin{array}{c}a=-1 \\ b=2\end{array}\right.$.

