Answer on Question 66041-Math - Differential Equations

Question: Solve

$$
\begin{equation*}
\left(D^{3}-D D^{\prime 2}-D^{2}+D D^{\prime}\right) z=0 \tag{1}
\end{equation*}
$$

Solution: Recall that $D=\frac{\partial}{\partial x}, D^{\prime}=\frac{\partial}{\partial y}$. We look for the general solution $z=z(x, y)$ of the PDE with constant coefficients

$$
\frac{\partial^{3} z}{\partial x^{3}}-\frac{\partial^{3} z}{\partial x \partial y^{2}}-\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=0 .
$$

This operator is reducible

$$
D^{3}-D D^{\prime 2}-D^{2}+D D^{\prime}=D\left(D-D^{\prime}\right)\left(D+D^{\prime}-1\right)
$$

Therefore the general solution of (1) has the form [1]

$$
z(x, y)=u(x, y)+v(x, y)+w(x, y)
$$

where u, v and w are general solutions of the first order PDEs

$$
u_{x}=0, \quad v_{x}-v_{y}=0, \quad w_{x}+w_{y}-w=0
$$

respectively. All these PDEs can be directly solved by the Lagrange method:

$$
\begin{aligned}
u_{x}=0 \Rightarrow u(x, y)=f(y) ; \\
v_{x}-v_{y}=0 \Rightarrow d x=-d y \Rightarrow x+y=c \Rightarrow v(x, y)=g(x+y) ; \\
w_{x}+w_{y}=w \Rightarrow d x=d y=\frac{d w}{w} \Rightarrow \quad x-y=c_{1}, w e^{-x}=c_{2} \\
\Rightarrow \quad w e^{-x}=h(x-y) \Rightarrow w=e^{x} h(x-y)
\end{aligned}
$$

where f, g and h are arbitrary C^{1}-functions. Finally,

$$
z(x, y)=f(y)+g(x+y)+e^{x} h(x-y) .
$$

Answer: $z(x, y)=f(y)+g(x+y)+e^{x} h(x-y)$, where f, g and h are arbitrary C^{1}-functions.

References

[1] Sneddon, Ian N., and J. C. Polkinghorne. Elements of partial differential equations. Physics Today 10.5 (1957): 96-109.

