Answer on Question 66041 - Math - Differential Equations

Question: Solve

$$(D^3 - DD'^2 - D^2 + DD')z = 0. (1)$$

Solution: Recall that $D = \frac{\partial}{\partial x}$, $D' = \frac{\partial}{\partial y}$. We look for the general solution z = z(x, y) of the PDE with constant coefficients

$$\frac{\partial^3 z}{\partial x^3} - \frac{\partial^3 z}{\partial x \partial y^2} - \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = 0.$$

This operator is reducible

$$D^{3} - DD'^{2} - D^{2} + DD' = D(D - D')(D + D' - 1).$$

Therefore the general solution of (1) has the form [1]

$$z(x,y) = u(x,y) + v(x,y) + w(x,y),$$

where u, v and w are general solutions of the first order PDEs

$$u_x = 0,$$
 $v_x - v_y = 0,$ $w_x + w_y - w = 0$

respectively. All these PDEs can be directly solved by the Lagrange method:

$$u_{x} = 0 \implies u(x, y) = f(y);$$

$$v_{x} - v_{y} = 0 \implies dx = -dy \implies x + y = c \implies v(x, y) = g(x + y);$$

$$w_{x} + w_{y} = w \implies dx = dy = \frac{dw}{w} \implies x - y = c_{1}, we^{-x} = c_{2}$$

$$\implies we^{-x} = h(x - y) \implies w = e^{x}h(x - y),$$

where f, g and h are arbitrary C^1 -functions. Finally,

$$z(x, y) = f(y) + g(x + y) + e^{x}h(x - y).$$

Answer: $z(x,y) = f(y) + g(x+y) + e^x h(x-y)$, where f, g and h are arbitrary C^1 -functions.

References

[1] Sneddon, Ian N., and J. C. Polkinghorne. Elements of partial differential equations. Physics Today 10.5 (1957): 96–109.