Answer on Question \#66013 - Math - Calculus

Question

Apply Inverse function theorem to check the local invertibility of the following function $f: R^{2} \rightarrow R^{2}$ given by $f(x, y)=(y \cos x, x-y+2)$ at the point $(0, \pi)$.

Solution

We have the vector-valued function f from R^{2} to R^{2}. The Jacobian matrix is

$$
J_{f}(x, y)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial(y \cos x)}{\partial x} & \frac{\partial(y \cos x)}{\partial y} \\
\frac{\partial(x-y+2)}{\partial x} & \frac{\partial(x-y+2)}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
-y \sin x & \cos x \\
1 & -1
\end{array}\right]
$$

and the determinant is

$$
\operatorname{det} J_{f}(x, y)=\left|\begin{array}{cc}
-y \sin x & \cos x \\
1 & -1
\end{array}\right|=y \sin x-\cos x
$$

We see that f is continuously differentiable at every point from R^{2}.
The value of the determinant at the given point $(0, \pi)$ is

$$
\operatorname{det} J_{f}(0, \pi)=\pi \sin 0-\cos 0=-1 \neq 0
$$

So, the determinant is nonzero at the point $(0, \pi)$. By Inverse function theorem, for the point $(0, \pi)$, there exists a neighborhood over which f is invertible.

The statement of the Inverse function theorem is given below.

The Inverse Function Theorem [1]

Let $f: R^{n} \rightarrow R^{n}$ be continuously differentiable on some open set containing a, and suppose $\operatorname{det} J_{f}(a) \neq 0$. Then there is some open set V containing a and an open W containing $f(a)$ such that $f: V \rightarrow W$ has a continuous inverse $f^{-1}: W \rightarrow V$ which is differentiable for all $y \in W$.

Answer: The function f is invertible near the point $(0, \pi)$.

Reference:

[1] The Inverse Function Theorem. Retrieved from

http://www.math.ucsd.edu/~nwallach/inverse[1].pdf

