Answer on Question \#66008-Math - Calculus

Question

Find the values of a and b for which the following limit exists. $\lim x \rightarrow 0\left(a e^{\wedge} x+e^{\wedge}-x+b x\right) /(1-\cos x)$

$$
\lim _{x \rightarrow 0} \frac{a e^{x}+e^{-x}+b x}{1-\cos x}
$$

Solution

Since the denominator $1-\cos x \rightarrow 0$ as $x \rightarrow 0$ then limit exists (finite) if numerator $a e^{x}+e^{-x}+b x \rightarrow 0$ as well, so we have
$a e^{0}+e^{0}+b \cdot 0=0 \Rightarrow a=-1$
Putting $a=-1$ into the original limit we get

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+b x}{1-\cos x} \tag{1}
\end{equation*}
$$

Both $-e^{x}+e^{-x}+b x \rightarrow 0$ and $1-\cos x \rightarrow 0$, so we can use L'Hospital's Rule

$$
\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+b x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{\left(-e^{x}+e^{-x}+b x\right)^{\prime}}{(1-\cos x)^{\prime}}=\lim _{x \rightarrow 0} \frac{-e^{x}-e^{-x}+b}{\sin x}
$$

In order to find b, we repeat the previous steps once again.
Since the denominator $\sin x \rightarrow 0$ as $x \rightarrow 0$ then the limit exists if the numerator
$-e^{x}-e^{-x}+b \rightarrow 0$ as well, so we have
$-e^{0}-e^{0}+b=0 \Rightarrow b=2$
Putting $b=2$ into the (1) we get

$$
\lim _{x \rightarrow 0} \frac{-e^{x}-e^{-x}+2}{\sin x}=\lim _{x \rightarrow 0} \frac{\left(-e^{x}-e^{-x}+2\right)^{\prime}}{(\sin x)^{\prime}}=\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}}{\cos x}=\frac{-1+1}{1}=0
$$

Answer:

The values of a and b for which the limit exists are $a=-1$ and $b=2 ; \lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}+2 x}{1-\cos x}=0$.

