Answer on Question \#66007 - Math - Calculus

Question

True/false. Justify your answer. $\lim (x, y) \rightarrow(0,0)\left(x^{\wedge} 2-y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)$ does not exist.

Solution

If the limit exists, then

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

must approach the same limit no matter how (x, y) approaches (0,0) [1, page 918]. Thus, if we can find two different paths of approach along which the function has different limits, then it follows that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

does not exist. First let's approach $(0,0)$ along the x-axis [1, page 918]. Then $y=0$ gives

$$
f(x, 0)=\frac{x^{2}}{x^{2}}=1
$$

for all $x \neq 0$, so $f(x, y) \rightarrow 1$ as $(x, y) \rightarrow(0,0)$ along the x-axis.
We now approach along the y-axis by putting $x=0$ [1, page 918]. Then

$$
f(x, y)=\frac{-y^{2}}{y^{2}}=-1
$$

for all $y \neq 0$, so $f(x, y) \rightarrow-1$ as $(x, y) \rightarrow(0,0)$ along the y-axis.
Since $f(x, y)$ has two different limits along two different lines, the given limit does not exist.
Answer: True.

References:

[1] James Stewart. Calculus, 7th Edition.

