Answer on Question #66005 – Math – Calculus

Question

True/False. Justify your answer.

The set {(x, y, z) | x > 0, y > 0, z < 0} is a domain in R³?

Solution

I. Let S denotes this set. Obviously, the set S is an intersection of three different sets S_1 , S_2 and S_3 :

$$S_1 = \{(x, y, z) \mid x > 0\}$$

$$S_2 = \{(x, y, z) \mid y > 0\}$$

$$S_3 = \{(x, y, z) \mid z < 0\}$$

The set S_1 is open in \mathbb{R}^3 , since $\forall s \in S_1$, we can choose $\varepsilon := x_s/2$ such that the neighbourhood of s, $U_{\varepsilon} = \{t = (x_t, y_t, z_t), ||t - s|| < \varepsilon\} \subset S_1$:

1. $\varepsilon \coloneqq x_s/2 > 0$. 2. $t \in U_{\varepsilon} \Leftrightarrow |x_t - x_s|^2 + |y_t - y_s|^2 + |z_t - z_s|^2 < e^2 \Longrightarrow x_t = x_s + x_t - x_s \ge x_s - |x_t - x_s| > x_s - e = x_s/2 > 0$. 3. $t \in U_{\varepsilon} \Longrightarrow y_t \in \mathbb{R}, z_t \in \mathbb{R}$.

Sets S_2 and S_3 are also open. Hence, S is open set as a finite intersection of open sets.

II. Obviosly, the set S is path connected: $\forall t, s \in S, \forall \lambda \in [0, 1], p := \lambda t + (1 - \lambda)s \in S$ (since $p_x > 0, p_y > 0, p_z < 0$). It can be shown that every path connected set in \mathbb{R}^3 it is also connected.

III. Since the set is open and connected, it is a domain in \mathbb{R}^3 .

Answer: True. This set is a domain in R³.