Answer on Question \#66005 - Math - Calculus

Question

True/False. Justify your answer.
The set $\{(x, y, z) \mid x>0, y>0, z<0\}$ is a domain in R^{3} ?

Solution

I. Let S denotes this set. Obviously, the set S is an intersection of three different sets S_{1}, S_{2} and S_{3} :

$$
\begin{aligned}
& S_{1}=\{(x, y, z) \mid x>0\} \\
& S_{2}=\{(x, y, z) \mid y>0\} \\
& S_{3}=\{(x, y, z) \mid z<0\}
\end{aligned}
$$

The set S_{1} is open in R^{3}, since $\forall s \in S_{1}$, we can choose $\varepsilon:=x_{s} / 2$ such that the neighbourhood of $s, U_{\varepsilon}=\left\{t=\left(x_{t}, y_{t}, z_{t}\right),\|t-s\|<\varepsilon\right\} \subset S_{1}$:

1. $\varepsilon:=x_{S} / 2>0$.
2. $t \in U_{\varepsilon} \Leftrightarrow\left|x_{t}-x_{s}\right|^{2}+\left|y_{t}-y_{s}\right|^{2}+\left|z_{t}-z_{s}\right|^{2}<e^{2} \Rightarrow x_{t}=x_{s}+x_{t}-x_{s} \geq x_{s}-\mid x_{t}-$ $x_{s} \mid>x_{s}-e=x_{s} / 2>0$.
3. $t \in U_{\varepsilon} \Rightarrow y_{t} \in \mathbb{R}, z_{t} \in \mathbb{R}$.

Sets S_{2} and S_{3} are also open. Hence, S is open set as a finite intersection of open sets.
II. Obviosly, the set S is path connected: $\forall t, s \in S, \forall \lambda \in[0,1], p:=\lambda t+(1-\lambda) s \in S$ (since $p_{x}>0, p_{y}>0, p_{z}<0$). It can be shown that every path connected set in R^{3} it is also connected.
III. Since the set is open and connected, it is a domain in R^{3}.

Answer: True. This set is a domain in R^{3}.

