Answer on Question \#66003 - Math - Calculus

Question

True/false. Justify your answer.
The function $f(x, y, z)=e^{x y z}$ is integrable over $[0,1] \times[0,1] \times[0,1]$.

Solution

Let us note that function $g(x)=e^{x}$ is continuous on [0,1] (see https://en.wikipedia.org/wiki/Exponential function). Then function $f(x, y, z)=e^{x y z}$ is continuous on $[0,1] \times[0,1] \times[0,1]$ because $e^{a b u}$ is continuous in u on $[0,1]$ assuming a and b are constants.

Using Riemann-Lebesgue theorem
(see https://en.wikipedia.org/wiki/Riemann integral\#Integrability, it stays true for the multidimensional cases) and noting that $e^{x y z} \leq e^{1 \cdot 1 \cdot 1}=e$ on $[0,1] \times[0,1] \times[0,1]$ we conclude that the function $f(x, y, z)=e^{x y z}$ is integrable over $[0,1] \times[0,1] \times[0,1]$.

Answer: True.

