Answer on Question #66003 - Math - Calculus

Question

True/false. Justify your answer.

The function $f(x, y, z) = e^{xyz}$ is integrable over $[0, 1] \times [0, 1] \times [0, 1]$.

Solution

Let us note that function $g(x) = e^x$ is continuous on [0,1] (see <u>https://en.wikipedia.org/wiki/Exponential function</u>). Then function $f(x, y, z) = e^{xyz}$ is continuous on $[0,1]\times[0,1]\times[0,1]$ because e^{abu} is continuous in u on [0,1] assuming a and b are constants.

Using Riemann-Lebesgue theorem

(see <u>https://en.wikipedia.org/wiki/Riemann_integral#Integrability</u>, it stays true for the multidimensional cases) and noting that $e^{xyz} \le e^{1\cdot 1\cdot 1} = e$ on $[0,1] \times [0,1] \times [0,1]$ we conclude that the function $f(x, y, z) = e^{xyz}$ is integrable over $[0,1] \times [0,1] \times [0,1]$.

Answer: True.