

Answer on Question #65918 – Math – Calculus

Question

Find the volume of the solid bounded by the planes $z = 0, x = 1, x = 2, y = -1, y = 1$ and the surface $z = x^2 + y^2$.

Solution

We shall use the concept of triple integrals (for example see <http://tutorial.math.lamar.edu/Classes/CalcIII/TripleIntegrals.aspx>).

In our case

$$V = \iiint_E dV = \iiint_E dx dy dz = \iint_D \left(\int_0^{x^2+y^2} dz \right) dx dy,$$

where $D = [1; 2] \times [-1; 1]$.

Since

$$\int_0^{x^2+y^2} dz = x^2 + y^2$$

we have

$$\begin{aligned} V &= \iint_D (x^2 + y^2) dx dy = \int_1^2 \left(\int_{-1}^1 (x^2 + y^2) dy \right) dx = \\ &= \int_1^2 \left(x^2 y + \frac{y^3}{3} \Big|_{y=-1}^{y=1} \right) dx = 2 \int_1^2 \left(x^2 + \frac{1}{3} \right) dx = 2 \left(\frac{x^3}{3} + \frac{x}{3} \right) \Big|_{x=1}^{x=2} = 2 \cdot \left(\frac{8}{3} + \frac{2}{3} - \frac{1}{3} - \frac{1}{3} \right) = \frac{16}{3} = \\ &= 5 \frac{1}{3}. \end{aligned}$$

Answer: $5 \frac{1}{3}$.