Answer on Question \#65799 - Math - Calculus

Question

Find the points (x, y) on the unit circle, at which the product $x y$ is maximum or minimum

Solution

We write this product in polar coordinates. The following formula connects polar and cartesian coordinates [1]:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Then for product $x y$ we get

$$
x y=r^{2} \sin \theta \cos \theta
$$

Given the points lie on the unit circle, $r=1$, hence this product is

$$
x y=\sin \theta \cos \theta
$$

Thus this product is a function of the angular variable θ with domain $0 \leq \theta \leq 2 \pi$

$$
x y=f(\theta)=\sin \theta \cos \theta
$$

To find maximum or minimum of this function we use Fermat's Theorem [1]: If f has a local maximum or minimum at $\theta=\theta_{0}$, then θ_{0} is a critical number of f.
Find critical numbers of $f(\theta)$:
$f^{\prime}(\theta)=(\sin \theta \cos \theta)^{\prime}=(\sin \theta)^{\prime} \cos \theta+\sin \theta(\cos \theta)^{\prime}=\cos \theta \cdot \cos \theta+\sin \theta \cdot(-\sin \theta)=$ $=\cos ^{2} \theta-\sin ^{2} \theta=0$.
Dividing by $\cos ^{2} \theta$ we get

$$
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta=1 \Rightarrow \tan \theta= \pm 1
$$

This equation has solutions:

1. $\theta_{1}=\frac{\pi}{4}$ in the first quadrant
2. $\theta_{1}=\frac{3 \pi}{4}$ in the second quadrant
3. $\theta_{3}=\frac{5 \pi}{4}$ in the third quadrant
4. $\theta_{4}=\frac{7 \pi}{4}$ in the fourth quadrant

Thus $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are the critical numbers of the function $x y=f(\theta)=\sin \theta \cos \theta$. For each case now we write x and y :

1. $x_{1}=1 \cdot \cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}, y_{1}=1 \cdot \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ so that $\left(x_{1}, y_{1}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is the maximum point, here $x_{1} \cdot y_{1}=\frac{1}{2}$.
2. $x_{2}=1 \cdot \cos \frac{3 \pi}{4}=-\frac{\sqrt{2}}{2}, \quad y_{2}=1 \cdot \sin \frac{3 \pi}{4}=\frac{\sqrt{2}}{2}$ so that $\left(x_{2}, y_{2}\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is the minimum point, here $x_{2} \cdot y_{2}=-\frac{1}{2}$.
3. $x_{3}=1 \cdot \cos \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2}, \quad y_{3}=1 \cdot \sin \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2}$ so that $\left(x_{3}, y_{3}\right)=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is the maximum point, here $x_{3} \cdot y_{3}=\frac{1}{2}$.
4. $x_{4}=1 \cdot \cos \frac{7 \pi}{4}=\frac{\sqrt{2}}{2}, \quad y_{4}=1 \cdot \sin \frac{7 \pi}{4}=-\frac{\sqrt{2}}{2}$ so that $\left(x_{4}, y_{4}\right)=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is the minimum point, here $x_{4} \cdot y_{4}=-\frac{1}{2}$.

Answer: the points (x, y) on the unit circle at which the product $x y$ is maximum or minimum are as follows:
$\left(x_{1}, y_{1}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is the maximum point
$\left(x_{2}, y_{2}\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is the minimum point
$\left(x_{3}, y_{3}\right)=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is the maximum point $\left(x_{4}, y_{4}\right)=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is the minimum point.

References:

[1] James Stewart. Calculus.

