Answer on Question \#65658, Math / Calculus
A price p (in dollars) and demand x for a product are related by:

$$
2 x^{2}+5 x p+50 p^{2}=24800
$$

If the price is increasing at a rate of 2 dollars per month when the price is 20 dollars, find the rate of change of the demand.
Solution
A price p and demand x are functions of time $t, d p / d t$ and $d x / d t$ their rates of change over time. We have that

$$
2 x^{2}+5 x p+50 p^{2}=24800, x>0
$$

Differentiate on both sides of the equation with respect to t

$$
\frac{d}{d t}\left(2 x^{2}+5 x p+50 p^{2}\right)=\frac{d}{d x}(24800)
$$

Use Chain rule and Product

Solve for $d x / d t$

$$
2(2 x) \frac{d x}{d t}+5 p \frac{d x}{d t}+5 x \frac{d p}{d t}+50(2 p) \frac{d p}{d t}=0
$$

$$
\frac{d x}{d t}=-5 \frac{x+20 p}{4 x+5 p} \cdot \frac{d p}{d t}
$$

Find demand x for a product when the price is 20 dollars
$2 x^{2}+5(20) x+50(20)^{2}=24800, x>0$
$2 x^{2}+100 x-4800=0, x>0$
$x^{2}+50 x-2400=0, x>0$
$(x+80)(x-30)=0, x>0$
$x=30$ dollars
To find the of change of the demand let

$$
x=\$ 30, p=\$ 20, \text { and } d p / d t=2 \text { dollars per month }
$$

Then

$$
\frac{d x}{d t}=-5 \frac{30+20(20)}{4(30)+5(20)} \cdot 2=-\frac{215}{11}\left(\frac{\text { dollars }}{\text { month }}\right) \approx 19.55 \frac{\text { dollars }}{\text { month }}
$$

The demand is decreasing at a rate of approximately 19.55 dollars per month.

