Answer on Question \#65646 - Math - Calculus

Question

Calculate

$\lim _{x \rightarrow 0}\left(\frac{3^{x}}{x}-\frac{2^{x}}{x}\right)$.

Solution

Let us prove the very important formula of limit which will be later used in the question. So, we will prove that

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a \text { for any } a>0
$$

Let $y=a^{x}-1$, then $y>-1$ for all real x and $1+y=a^{x}$.
Taking logarithm on both sides (which are both positive), we have

$$
\ln (1+y)=\ln a^{x} \Rightarrow \ln (1+y)=x \ln a \Rightarrow x=\frac{\ln (1+y)}{\ln a}
$$

Also $\lim _{x \rightarrow 0} y=\lim _{x \rightarrow 0}\left(a^{x}-1\right)=a^{0}-1=1-1=0$.
This shows that $y \rightarrow 0$ as $x \rightarrow 0$. Therefore, the initial limit can be rewritten as

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\lim _{y \rightarrow 0} \frac{y}{\frac{\ln (1+y)}{\ln a}}=\lim _{y \rightarrow 0} \frac{\ln a}{\frac{1}{y} \ln (1+y)}=\lim _{y \rightarrow 0} \frac{\ln a}{\ln (1+y)^{1 / y}}=\frac{\ln a}{\ln \left(\lim _{y \rightarrow 0}(1+y)^{1 / y}\right)} .
$$

Using the relation $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$, we have

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\frac{\ln a}{\ln e}=\ln a .
$$

Let us now calculate the limit in the question:

$$
\lim _{x \rightarrow 0}\left(\frac{3^{x}}{x}-\frac{2^{x}}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{3^{x}-1}{x}-\frac{2^{x}-1}{x}\right)=\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}-\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}=\ln 3-\ln 2=\ln \frac{3}{2}=\ln 1.5
$$

Answer: $\ln 1.5$.

