Answer on Question \#65630 - Math - Differential Equations

A Company uses 2,500 units during the course of the year, and its usage is relatively constant throughout the year. These units are purchased from a supplier 100 kilometers away for Ksh. 15 each, and the lead time is 2 days. The holding cost per unit per year is Ksh. 1.50 (or 10% of unit cost) and the ordering cost per order is Ksh.18.75. There are 250 working days per year for this company.

Question

a) What is $E O Q$?

Solution

Economic Order Quantity:

$$
Q^{*}=\sqrt{\frac{2 D K}{h}}
$$

where D - annual requirement quantity, K - cost per order, h - yearly carrying cost per unit
We have
$D=2500 ; \quad K=18.75 ; \quad h=1.5$.

$$
E O Q=Q^{*}=\sqrt{\frac{2 \cdot 2500 \cdot 18.75}{1.5}}=250 \text { units }
$$

Answer: $E O Q=250$ units

Question

b) Given the $E O Q$, what is the average inventory?

Solution
average inventory $=\frac{T C}{N}$,
where

$$
N \text { - number of working days per year; }
$$

$$
\begin{gathered}
T C=\text { Total cost }=P D+K \frac{D}{E O Q}+h \frac{E O Q}{2} ; \quad P=15 \text { is cost per unit; } \\
\qquad T C=15 \cdot 2500+\frac{18 \cdot 75 \cdot 2500}{250}+\frac{1.5 \cdot 250}{2}=37875 ; \\
\text { average inventory }=\frac{37875}{250}=151.5 .
\end{gathered}
$$

Answer: average inventory $=151.5$.

Question

c) In minimizing cost, how many orders would be made each year? What would be the annual ordering cost?

Solution

Number of orders:

$$
N_{1}=\frac{D}{E O Q}=\frac{2500}{250}=10
$$

Annual ordering cost:

$$
K \cdot N_{1}=18.75 \cdot 10=187.5
$$

Answer: 10; 187.5.

Question

d) Given the $E O Q$, what is the total annual inventory cost (including purchase cost)

$$
\begin{gathered}
\text { Solution } \\
T C=P D+K \frac{D}{E O Q}+h \frac{E O Q}{2}=15 \cdot 2500+\frac{18.75 \cdot 2500}{250}+\frac{1.5 \cdot 250}{2}=37875
\end{gathered}
$$

Answer: 37875.

Question

e) What is the time between orders?

Answer: the lead time $=2$ days

Question

f) What is the $R O P$ (re-oder point)?

Solution

$R O P=$ Average daily uage rate \times Lead time in days

$$
R O P=\frac{2500}{250} \cdot 2=20 \text { units }
$$

When the inventory level reaches 20 units an order should be placed for material. Answer: 20 units.

