Question 65555:

What value assigned to $f(x)$ at $x=2$ will make the function f defined by $f(x)=\left(x^{2}+x-6\right) /\left(x^{2}-4\right)$ continuous?

Solution:

Note that the function $\mathrm{f}(\mathrm{x})$ is undefined and therefore not continuous at $\mathrm{x}=2$. To determine if this discontinuity is removable, we need to find the limit of the function as x approaches 2 :

$$
\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{\mathrm{x}^{2}+\mathrm{x}-6}{\mathrm{x}^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{(x+3)}{(x+2)}=\frac{\lim _{x \rightarrow 2}(x+3)}{\lim _{x \rightarrow 2}(x+2)}=\frac{5}{4}
$$

So, the discontinuity can be removed by assigning the value $5 / 4$ to $f(x)$ at $x=2$.

Answer:

5/4.
Answer provided by https://www.AssignmentExpert.com

