Answer on Question#65384 - Math - Statistics and Probability

Question. Let X_1, X_2, \ldots, X_n be a random sample with $E(X_i) = m$ and $Var(X_i) = \sigma^2$ for all $i = 1, 2, \ldots, n$. Show that $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 .

$$\begin{aligned} & \text{Proof. Let us compute } E(S^2) = \frac{1}{n-1} \sum_{i=1}^n E[(X_i - \bar{X})^2] = \frac{1}{n-1} \sum_{i=1}^n E\left[\left((X_i - m) - (\bar{X} - m)\right)^2\right] \\ & = \frac{1}{n-1} \sum_{i=1}^n E[(X_i - m)^2 - 2(X_i - m)(\bar{X} - m) + (\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n E[(X_i - m)^2] \\ & - \frac{2}{n-1} E\sum_{i=1}^n (X_i - m)(\bar{X} - m) + \frac{1}{n-1} \sum_{i=1}^n E[(\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i) \\ & - \frac{2}{n-1} E(\bar{X} - m) \sum_{i=1}^n (X_i - m) + \frac{n}{n-1} E[(\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i) \\ & - \frac{2}{n-1} E(\bar{X} - m)(\sum_{i=1}^n X_i - mn) + \frac{n}{n-1} E[(\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i) \\ & - \frac{2}{n-1} E(\bar{X} - m)(n\bar{X} - nm) + \frac{n}{n-1} E[(\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i) - \frac{2n}{n-1} E[(\bar{X} - m)^2] \\ & + \frac{n}{n-1} E[(\bar{X} - m)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i) - \frac{n}{n-1} E[(\bar{X} - m)^2] = \frac{n\sigma^2}{n-1} - \frac{n}{n-1} Var(\bar{X}) \\ & = \frac{n}{n-1} \left(\sigma^2 - Var\left[\frac{1}{n} \sum_{i=1}^n X_i\right]\right) = \frac{n}{n-1} \left(\sigma^2 - \frac{1}{n^2} \sum_{i=1}^n Var(X_i)\right) = \frac{n}{n-1} \left(\sigma^2 - \frac{n\sigma^2}{n^2}\right) \\ & = \frac{n\sigma^2}{n-1} \left(1 - \frac{1}{n}\right) = \frac{n\sigma^2}{n-1} \cdot \frac{n-1}{n} = \sigma^2. \text{ During these computations we used the following facts:} \end{aligned}$$

 $Var(X) = E\left[\left(X - E(X)\right)^{2}\right]$ by definition (see https://en.wikipedia.org/wiki/Variance);

 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ by definition (see https://en.wikipedia.org/wiki/Sample mean and covariance), hence $\sum_{i=1}^{n} X_i = n\bar{X}$;

 $Var(aX) = a^2 Var(X)$ (see https://en.wikipedia.org/wiki/Variance#Properties);

 $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$ when $X_1, X_2, ..., X_n$ are independent

(see https://en.wikipedia.org/wiki/Variance#Properties); in our case X_1, X_2, \dots, X_n are independent by definition of data sample

(see https://en.wikipedia.org/wiki/Sample (statistics)).

Since $E(S^2) = \sigma^2$ we conclude that $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 by definition of unbiased estimator (see https://en.wikipedia.org/wiki/Estimator#Bias).

Assertion is established.

Answer provided by www.AssignmentExpert.com