Question \#65247, Math / Abstract Algebra

Q. Show that similar matrices have same eigen values.

Answer.
Let matrices A and B are similar, i.e. $B=T A T^{-1}$, where T is invertible matrix.
Thus, $B-\lambda I=T A T^{-1}-\lambda I=T A T^{-1}-\lambda T I T^{-1}=T_{A T}{ }^{-1}-T \lambda I T^{-1}=$
$=T(A-\lambda I) T^{-1}$.
So $\operatorname{det}(B-\lambda I)=\operatorname{det}\left(T(A-\lambda I) T^{-1}\right)=\operatorname{detT} \operatorname{det}(A-\lambda I) \operatorname{detT}^{-1}=$
$=\operatorname{det}(A-\lambda I)$.
Since A and B have the same characteristic polynomial, they have the same eigenvalues (counting multiplicity).

References.

Section SD: Similarity and Diagonalization. (2004). Retrieved February 11, 2017, from http://aimath.org/knowlepedia/Beezer/

