Answer on Question #64522 - Math - Real Analysis

Question

Give an example of two divergence sequences X and Y such that: (a) their sum X+Y converges, (b) their product XY converges

Solution

Let's consider the sequences $x_n = \begin{cases} 0, & n - odd \\ 1, & n - even \end{cases}$ and $y_n = \begin{cases} 1, & n - odd \\ 0, & n - even \end{cases}$. Since the subsequences $x_{2k} = 1 \xrightarrow[k \to \infty]{} 1$ and $x_{2k-1} = 0 \xrightarrow[k \to \infty]{} 0$ have different limit points, then the sequence $x_n = \begin{cases} 0, & n - odd \\ 1, & n - even \end{cases}$ is divergent.

Since the subsequences $y_{2k-1} = 1 \xrightarrow{} 1$ and $y_{2k} = 0 \xrightarrow{} 0$ have different limit points, then the sequence $y_n = \begin{cases} 1, & n - odd \\ 0, & n - even \end{cases}$ is divergent. **PART(a).** Now we can consider the sum of those sequences: $x_n + y_n = \begin{cases} 1, & n - odd \\ 1, & n - even \end{cases} = 1 \xrightarrow{} 1$, hence the sequence $(x_n + y_n)$ is convergent.

PART(b). Now we can consider the product of those sequences: $x_n \cdot y_n = \begin{cases} 0, & n - odd \\ 0, & n - even \end{cases} = 0 \xrightarrow[n \to \infty]{} 0$, hence the sequence $(x_n \cdot y_n)$ is convergent. **Answer:** $x_n = \begin{cases} 0, & n - odd \\ 1, & n - even \end{cases}$, $y_n = \begin{cases} 1, & n - odd \\ 0, & n - even \end{cases}$.

Answer provided by https://www.AssignmentExpert.com