Answer on Question \#64476 - Math - Calculus

Question

The relationship of a capacitor voltage (volts) and time (seconds) is given by $V=95\left(1-e^{0.1 t}\right)$.

1. Plot the graph between $t=0$ and $t=50$ at 10 intervals.
2. Find the differentiation value at $t=10$. Use calculus to verify your solution.

Solution

1.

t, sec	0	5	10	15	20	25	30	35	40	45	50
U, volts	0	-61.63	-163.24	-330.76	-606.96	-1062.34	-1813.13	-3050.97	-5091.82	-8456.63	-14004.25

2. To differentiate $V=95\left(1-e^{0.1 t}\right)$, we need to use the following rules:

1. $f^{\prime}(a x)=a f^{\prime}(x)$;
2. $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$;
3. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$;

Therefore,

$$
V^{\prime}(t)=\left(95\left(1-e^{0.1 t}\right)\right)^{\prime}=95 \cdot\left(1-e^{0.1 t}\right)^{\prime}=95 \cdot\left(0-\left(e^{0.1 t}\right)^{\prime}\right)=-95 e^{0.1 t} \cdot 0.1=-9.5 e^{0.1 t}
$$

Thus, at $t=10$

$$
V^{\prime}(10)=-9.5 e^{0.1 \cdot 10}=-9.5 e=-25.82 .
$$

Answer provided by www.AsignmentExpert.com

