Answer on Question #64367 – Math – Abstract Algebra

Question

There exists a non-cyclic group in which every proper subgroup is cyclic. True or False. Prove.

Solution

Consider the dihedral group D_3 , that is the symmetry group of an equilateral triangle. The multiplication table of this group is given below:

*	r_0	r_1	r_2	S ₁	s ₂	S ₃
r_0	r_0	r_1	r_2	S ₁	S ₂	S ₃
r_1	r_1	r_2	r_0	s ₂	S ₃	S ₁
r_2	r_2	r_0	r_1	S ₃	S ₁	S ₂
S ₁	S ₁	S ₃	S ₂	r_0	r_2	r_1
S ₂	S ₂	s ₁	S ₃	r_1	r_0	r_2
S ₃	S ₃	S ₂	S_1	r_2	r_1	r_0

From the table we see that G is non-abelian, because the table is not symmetric. Therefore, G is non-cyclic. The proper nonempty subsets, which contain r_0 and closed under multiplication, are:

$$\begin{split} S_1 &= \{r_0\},\\ S_2 &= \{r_0, r_1, r_2\},\\ S_3 &= \{r_0, s_1\},\\ S_4 &= \{r_0, s_2\},\\ S_5 &= \{r_0, s_3\} \end{split}$$

The subsets S_1 , S_3 , S_4 and S_5 are cyclic subgroups because the elements r_0 , s_1 , s_2 and s_3 are their own inverses. The subset S_2 is a cyclic subgroup because r_1 is a generator for it.

Answer: True.

Answer provided by www.AssignmentExpert.com