Answer on Question #64365 – Math – Abstract Algebra

Question

Show that $x^2 + x + 4$ is irreducible over \mathbb{Z}_{11} .

Solution

Since the polynomial has degree 2, it is irreducible over a field if and only if it has no roots in the field. Let's check that:

	0	1	2	3	4	5	6	7	8	9	10
$x^2 + x + 4$	4	6	10	16	24	34	46	60	76	94	114
$x^{2} + x + 4 \pmod{11}$	4	6	10	5	2	1	2	5	10	6	4

We used Reducibility Test for Degrees 2 and 3 to prove that the given polynomial is irreducible over the given field.