Answer on Question \#64365 - Math - Abstract Algebra

Question

Show that $x^{2}+x+4$ is irreducible over \mathbb{Z}_{11}.

Solution

Since the polynomial has degree 2 , it is irreducible over a field if and only if it has no roots in the field. Let's check that:

	0	1	2	3	4	5	6	7	8	9	10
$x^{2}+x+4$	4	6	10	16	24	34	46	60	76	94	114
$\mathrm{x}^{2}+\mathrm{x}+4(\bmod 11)$	4	6	10	5	2	1	2	5	10	6	4

We used Reducibility Test for Degrees 2 and 3 to prove that the given polynomial is irreducible over the given field.

