Question

Taylor's expansion of $f(x)=\operatorname{Sin} x$ at $x=0$.

Solution

By the definition, Taylor expansion is given by
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}$,
where a is a point where the expansion is evaluated,
$n!=1 \cdot 2 \cdot \cdots \cdot n$ is the factorial of n,
$f^{(n)}(a)$ is the nth derivative of f evaluated at the point a.
In this problem
$f(x)=\sin (x), f^{(n)}(a)=\sin \left(a+\frac{n \pi}{2}\right), a=0$,
$f^{(n)}(0)=\sin \left(\frac{n \pi}{2}\right)=\left\{\begin{array}{l}1, \text { if } n=4 m+1, m \text { is integer, } \\ 0, \text { if } n=2 m, \quad m \text { is integer, } \\ -1, \text { if } n=4 m+3, m \text { is integer. }\end{array}\right.$
In other words, the derivatives of even degree are zero.
General formula of expansion of $f(x)=\sin x$ at $x=0$:

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Answer: $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$

