Answer on Question \#64133 - Math - Calculus

Question

Two roads intersect at point P at an angle of 120°, as shown in the figure. Car X is driving from P towards A , and car Y is driving from P towards B . At a particular time, car X is 10 kilometers from P and traveling at $60 \mathrm{~km} / \mathrm{hr}$, while car Y is 12 kilometers from P and traveling at $80 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the two cars changing?

Solution

Let $\mathrm{PX}=x, \mathrm{PY}=y, \mathrm{XY}=d$.
Applying the Law of Cosines to the triangle $\Delta \mathrm{PXY}$ we can find the distance d between the cars X, Y:

$$
d^{2}=x^{2}+y^{2}-2 x y \cos 120^{\circ}=x^{2}+y^{2}-2 x y\left(-\frac{1}{2}\right)=x^{2}+y^{2}+x y
$$

hence

$$
d=\sqrt{x^{2}+y^{2}+x y}
$$

The distance between the two cars is changing at the rate which is equal to the derivative of d with respect to time t :

$$
d_{t}^{\prime}=\left(\sqrt{x^{2}+y^{2}+x y}\right)_{t}^{\prime}=\frac{\left(x^{2}+y^{2}+x y\right)_{t}^{\prime}}{2 \sqrt{x^{2}+y^{2}+x y}}=\frac{2 x \cdot x_{t}^{\prime}+2 y \cdot y_{t}^{\prime}+x_{t}^{\prime} y+x y_{t}^{\prime}}{2 \sqrt{x^{2}+y^{2}+x y}}
$$

Here we used the chain rule, the sum rule and the product rule, x_{t}^{\prime} is the velocity of the X car, y_{t}^{\prime} is the velocity of the Y car.

Plug the given values into the obtained expression:

$$
\begin{aligned}
& d_{t}^{\prime}=\frac{2 x \cdot x_{t}^{\prime}}{}+2 y \cdot y_{t}^{\prime}+x_{t}^{\prime} y+x y_{t}^{\prime} \\
& 2 \sqrt{x^{2}+y^{2}+x y} \\
&=\frac{2 \cdot 10 \cdot 60+2 \cdot 12 \cdot 80+60 \cdot 12+10 \cdot 80}{2 \sqrt{10^{2}+12^{2}+10 \cdot 12}}=\frac{4640}{38.1576} \\
& \approx 121.6 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Answer: the distance between the two cars is changing at the rate of $121.6 \mathrm{~km} / \mathrm{hr}$

