Answer on Question \#64114 - Math - Calculus

Question

2. For the function $f(x)=2 x-\arcsin x$,
a) Locate all the local extrema and classify them as maxima or minima.
b) Are these local extrema also global extrema? Explain your answer.

Solution

$$
f(x)=2 x-\arcsin x
$$

Domain: $[-1,1]$
a) Find the first derivative

$$
f^{\prime}(x)=(2 x-\arcsin x)^{\prime}=2-\frac{1}{\sqrt{1-x^{2}}}
$$

Derivative does not exist at $x=-1$, and $x=1$. These points are endpoints of the interval [-1, 1].
$f^{\prime}(x)=0=>2-\frac{1}{\sqrt{1-x^{2}}}=0$;
$x=-\frac{\sqrt{3}}{2}$ or $x=\frac{\sqrt{3}}{2}$.
Use the First Derivative Test
$f^{\prime}(x)<0$ on an open interval to the left of $x=-\sqrt{3} / 2$ and $f^{\prime}(x)>0$ on an open interval to the right of $x=-\sqrt{3} / 2$.
Therefore $f(x)$ has a relative minimum at $x=-\sqrt{3} / 2$.
$f^{\prime}(x)>0$ on an open interval to the left of $x=\sqrt{3} / 2$ and $f^{\prime}(x)<0$ on an open interval to the right of $x=\sqrt{3} / 2$.
Therefore $f(x)$ has a relative maximum at $x=\sqrt{3} / 2$.
b) We have that
$f(-1)=2(-1)-\arcsin (-1)=-2+\frac{\pi}{2}$;
$f(1)=2(1)-\arcsin (1)=2-\frac{\pi}{2}$;
$f\left(-\frac{\sqrt{3}}{2}\right)=2\left(-\frac{\sqrt{3}}{2}\right)-\arcsin \left(-\frac{\sqrt{3}}{2}\right)=-\sqrt{3}+\frac{\pi}{3}$;
$f\left(\frac{\sqrt{3}}{2}\right)=2\left(\frac{\sqrt{3}}{2}\right)-\arcsin \left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}-\frac{\pi}{3}$.
$-\sqrt{3}+\frac{\pi}{3}<-2+\frac{\pi}{2}<2-\frac{\pi}{2}<\sqrt{3}-\frac{\pi}{3}$.
Therefore $f(x)$ has a global minimum at $x=-\sqrt{3} / 2$ and has a global maximum at $x=\sqrt{3} / 2$.

Answer: a) $\left(-\frac{\sqrt{3}}{2},-\sqrt{3}+\frac{\pi}{3}\right)$ is a local minimum, $\left(\frac{\sqrt{3}}{2}, \sqrt{3}-\frac{\pi}{3}\right)$ is a local maximum.
b) These local extrema are also global extrema.

Question

4. For the curve $y=\ln \left(1+x^{2}\right)$, find
a) intervals of increase and decrease and local extrema,
b) intervals of concavity and inflection points, then use this information to
c) sketch the graph.

Solution

$$
y=\ln \left(1+x^{2}\right)
$$

Domain: $(-\infty, \infty)$.
a) Find the first derivative

$$
\begin{gathered}
y^{\prime}=\left(\ln \left(1+x^{2}\right)\right)^{\prime}=\frac{2 x}{1+x^{2}} \\
y^{\prime}=0=>\frac{2 x}{1+x^{2}}=0 \Rightarrow x=0
\end{gathered}
$$

Use the First Derivative Test
$y^{\prime}<0$ on an open interval to the left of $x=0$ and $y^{\prime}>0$ on an open interval to the right of $x=0$.
Therefore $f(x)$ has a relative minimum at $x=0$.
$y(0)=\ln (1+0)=0$.
y decreases on $(-\infty, 0)$;
y increases on $(0, \infty)$.
b) Find the second derivative

$$
\begin{gathered}
y^{\prime \prime}=\left(\frac{2 x}{1+x^{2}}\right)^{\prime}=2 \frac{1+x^{2}-2 x^{2}}{\left(1+x^{2}\right)^{2}}=2 \frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} \\
y^{\prime}=0=>2 \frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}=0=>x=-1 \text { or } x=1
\end{gathered}
$$

$y^{\prime \prime}<0$ on an open interval to the left of $x=-1$ and $y^{\prime \prime}>0$ on an open interval to the right of $x=-1$. Therefore $(-1, \ln 2)$ is the inflection point.
$y^{\prime \prime}>0$ on an open interval to the left of $x=1$ and $y^{\prime \prime}<0$ on an open interval to the right of $x=1$. Therefore $(1, \ln 2)$ is the inflection point.
y is concave down on $(-\infty,-1) \mathrm{U}(1, \infty)$.
y is concave up on $(-1,1)$.
c) The function is even:

$$
y(x)=y(-x)
$$

Fig. The graph of the curve $y=\ln \left(1+x^{2}\right)$.

Answer:

a) interval of increase is $(0, \infty)$, interval of decrease is $(-\infty, 0)$, local minimum is $(0,0)$.
b) interval of concavity down is $(-\infty,-1) \mathrm{U}(1, \infty)$; interval of concavity up is $(-1,1)$; the inflection points are $(-1, \ln 2),(1, \ln 2)$.

