Answer on Question \#64112 - Math - Calculus

Question

Two roads intersect at point P at an angle of 120, as shown in the figure. Car X is driving from P towards A, and car Y is driving from P towards B. At a particular time, car X is 10 kilometers from P and traveling at $60 \mathrm{~km} / \mathrm{hr}$, while car Y is 12 kilometers from P and traveling at $80 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the two cars changing?

Solution

To find the rate of distance changing between two cars it is necessary to determine the distance between them, and then calculate the derivative of the distance over time.

Assume that $\operatorname{car} \mathrm{X}$ at a time t is at the point X and $\operatorname{car} \mathrm{Y}$ is at the point Y . The distance d between them can be found using the Law of Cosines applied to the triangle $\triangle P X Y$:
$d=\sqrt{x^{2}+y^{2}-2 x y \cos 120^{\circ}}=\sqrt{x^{2}+y^{2}-2 x y\left(-\frac{1}{2}\right)}=\sqrt{x^{2}+y^{2}+x y}$
To find the derivative of the distance d with respect to time t we use the chain rule, the sum rule and the product rule:
$d_{t}=\left(\sqrt{x^{2}+y^{2}+x y}\right)_{t}=\frac{\left(x^{2}+y^{2}+x y\right)_{t}}{2 \sqrt{x^{2}+y^{2}+x y}}=\frac{2 x \cdot x_{t}+2 y \cdot y_{t}+x_{t} y+x y_{t}}{2 \sqrt{x^{2}+y^{2}+x y}}=\frac{2 x \cdot x_{t}+2 y \cdot y_{t}+x_{t} y+x y_{t}}{2 \sqrt{x^{2}+y^{2}+x y}}$
Here x_{t} is the velocity of the X car, y_{t} is the velocity of the Y car. Plug $x=10, x_{t}=60, y=12$, $y_{t}=80$ into the formula for d_{t} :
$d_{t}=\frac{2 \cdot 10 \cdot 60+2 \cdot 12 \cdot 80+60 \cdot 12+10 \cdot 80}{2 \sqrt{10^{2}+12^{2}+10 \cdot 12}}=\frac{4640}{38.1576} \approx 121.6 \mathrm{~km} / \mathrm{hr}$.
Answer: The distance between two cars is changed at the rate of $121.6 \mathrm{~km} / \mathrm{hr}$.

