## Answer on Question \#64110 - Math - Calculus

## Question

1. Suppose that for all $x>=0$, the average value of $f(x)$ on $[0 ; x]$ is equal to $x$. What is the function $\mathrm{f}(\mathrm{x})$ ?

## Solution

The average value of $f(x)$ on $[0 ; x]$ is $\frac{\int_{0}^{x} f(u) d u}{x}$.
Given the average value of $f(x)$ is $x$, we get the following equation:

$$
\begin{gather*}
\frac{\int_{0}^{x} f(u) d u}{x-0}=x \\
\int_{0}^{x} f(u) d u=x^{2} \tag{1}
\end{gather*}
$$

Let $\mathrm{F}(\mathrm{x})$ be such a function that $\frac{d F(x)}{d x}=f(x)$
Applying the fundamental theorem of calculus (Newton-Leibniz formula)

$$
\int_{a}^{b} f(u) d u=F(b)-F(a)(2)
$$

to equation (1) we get the next equation:

$$
\begin{gathered}
F(x)-F(0)=x^{2} \\
\frac{d(F(x)-F(0))}{d x}=\frac{d\left(x^{2}\right)}{d x} \\
\frac{d F(x)}{d x}=f(x)=2 x
\end{gathered}
$$

Answer: $f(x)=2 x$

## Question

2. The equation $x^{\wedge} 4+x^{\wedge} 3-4=0$ has a solution near $x=1$. Use Newton's method to find this solution correct to 8 significant figures.

## Solution

Let $x_{0}=1$ and equation is $f(x)=0$, where

$$
\begin{gathered}
f(x)=x^{4}+x^{3}-4 ; \\
\frac{d f(x)}{d x}=4 x^{3}+3 x^{2} .
\end{gathered}
$$

Iteration formula for this method is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\frac{f f\left(x_{n}\right)}{d x}}=x_{n}-\frac{x_{n}^{4}+x_{n}^{3}-4}{4 x_{n}^{3}+3 x_{n}^{2}},
$$

where $x_{0}=1$.
Just use it while $\left|x_{n+1}-x_{n}\right|>$ epsilon $=10^{-8}$.

|  | $n$ |
| :--- | :--- |
| 1 | 1.2857142857 |
| 2 | 1.2219746898 |
| 3 | 1.2173567366 |
| 4 | 1.2173336996 |
| 5 | 1.2173336991 |
| 6 | 1.2173336991 |

Then we have at the last step that

$$
x_{n}=1.217333699
$$

When we round it to 8 digits after dot we will have

$$
x_{n}=1.21733370
$$

## Answer:

$$
x=1.21733370
$$

## Question

3. At a certain moment, a triangle has base length 10 cm and perpendicular height 8 cm . The length is increasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$ while the height is decreasing at $1 \mathrm{~cm} / \mathrm{s}$. How fast is the area changing? Is the area increasing or decreasing?

## Solution

The area of the triangle is a product of base length by the perpendicular height.
The area of the given triangle at the moment of time $t$ :

$$
\mathrm{S}(\mathrm{t})=\frac{1}{2}(10 \mathrm{~cm}+1 \mathrm{~cm} / \mathrm{s} \cdot \mathrm{t})(8 \mathrm{~cm}-1 \mathrm{~cm} / \mathrm{s} \cdot \mathrm{t})
$$

$S_{0}=S(0)=40 \mathrm{~cm}^{\wedge} 2$ is the initial area of square.
$\mathrm{S}(\mathrm{t})=\frac{1}{2}\left(80 \mathrm{~cm}^{\wedge} 2-10 \mathrm{~cm}^{\wedge} 2 / \mathrm{s} \cdot \mathrm{t}+8 \mathrm{~cm}^{\wedge} 2 / \mathrm{s} \cdot \mathrm{t}-\left(\mathrm{t}^{*} \mathrm{~cm} / \mathrm{s}\right)^{\wedge} 2\right)$.
$\mathrm{S}(\mathrm{t})=\frac{1}{2}\left(80 \mathrm{~cm}^{\wedge} 2-8 \mathrm{~cm} \wedge 2 / \mathrm{s} \cdot \mathrm{t}-\left(\mathrm{t}^{*} \mathrm{~cm} / \mathrm{s}\right)^{\wedge} 2\right)=$
$=40 \mathrm{~cm}^{\wedge} 2-4 \mathrm{~cm}^{\wedge} 2 / \mathrm{s} \cdot \mathrm{t}-\frac{1}{2}\left(\mathrm{t}^{*} \mathrm{~cm} / \mathrm{s}\right)^{\wedge} 2$, that is,
$S(t)=40-4 \cdot t-\frac{1}{2} t^{\wedge} 2$
We can see that it is a vertical parabola, open down because the coefficient of $t^{2}$ is $-\frac{1}{2}<0$.
Coordinates of the vertex are

$$
\begin{aligned}
& t_{\text {vert }}=-\frac{-4}{2 \cdot\left(-\frac{1}{2}\right)}=-4 \\
& S_{\text {vert }}=S\left(t_{\text {vert }}\right)=40-4 \cdot(-4)-\frac{1}{2} \cdot(-4)^{2}=48
\end{aligned}
$$

Time is nonnegative, hence $t \geq 0$.
So after $\mathrm{t}=0 \mathrm{~S}(\mathrm{t})$ will decrease from the value $40 \mathrm{~cm}^{\wedge} 2$ to zero with a passage of time, but geometrically the area of the triangle can't be less than zero.
The area is changing at the rate of

$$
\frac{d}{d t} \mathrm{~S}(\mathrm{t})=\frac{d}{d t}\left(40-4 \cdot \mathrm{t}-\frac{1}{2} \mathrm{t}^{\wedge} 2\right)=-4-t<0\left(\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right)
$$

Answer:
The rate of change is $(-4-t) \mathrm{cm}^{\wedge} 2 / \mathrm{s}$
The area of triangle will be decreasing.

