Answer on Question \#63945 - Math - Calculus

Question

A closed box with a square base is to have a volume of 2000 cu inches. The material for the top and bottom of the box is to cost 3 pesos per square inch, and the material for the sides is to cost 1.50 pesos/square inch. If the cost of the material is to be least, find the dimensions of the box.

Solution

If the edge of the square base is x, then its area is x^{2}, so the cost of the top and bottom is $2 x^{2}$.
Since the volume is $\mathrm{V}=2000=h x^{2}$, then the height $\mathrm{h}=2000 / \mathrm{x}^{2}$.
The surface area is SA $=4 \cdot\left(2000 / x^{2}\right) x+2 x^{2}$,
The price of material is given by
$y=1.5 \cdot 4 \cdot\left(2000 / x^{2}\right) x+3 \cdot\left(2 x^{2}\right)$,
$y=12000 / x+6 x^{2}$,
$y=12000 x^{\wedge}(-1)+6 x^{2}$,
The first derivative is
$f^{\prime}(x)=-12000 x^{\wedge}(-2)+12 x$,
If we set it equal to zero and solve, then we will get the value of x to form the box with the least cost:
$-12000 x^{\wedge}(-2)+12 x=0$,
$12 x^{\wedge} 3-12000=0$,
$\mathrm{x}^{3}=1000$,
$\mathrm{x}=10$.
If $\mathrm{x}=10$, then $\mathrm{h}=2000 / 10^{\wedge} 2=20$, so the box is $10^{\prime \prime} \times 10^{\prime \prime} \times 20^{\prime \prime}$.
Answer: 10 square inch, 10 square inch, 20 square inch.

