Answer on Question #63934 – Math – Calculus

Question

Find the numbers whose sum is x, if the product of one by the square of the other is to be a maximum.

Solution

$$ab^2 \rightarrow max$$

 $a+b=x$

It follows from the equation that b = x - a, then

$$ab^{2} = a(x - a)^{2}$$

$$f(a) = a(x - a)^{2} \to max$$

$$\frac{df}{da} = (a(x - a)^{2})' = (x - a)^{2} + a \cdot 2 \cdot (x - a) \cdot (-1) = (x - a) \cdot ((x - a) - 2a) =$$

$$= (x - a)(x - 3a),$$

$$\frac{df}{da} = (x - a)(x - 3a)$$

$$\frac{df}{da} > 0 <=>$$

$$(x - a)(x - 3a) > 0 <=>$$

$$\begin{cases} x - a > 0, \\ x - 3a > 0; \\ x - a < 0, \\ x - 3a < 0; \end{cases}$$

$$\begin{cases} a < x, \\ a < x/3; \\ a > \frac{x}{3}. \end{cases}$$

Case 1: $x \neq 0$.

If a = 0, then b = x and $ab^2 = 0$. Obviously it is not a global maximum.

If a > 0, then $\frac{df}{da} > 0 \le a > x$ or $a < \frac{x}{3}$. If a = x, then b = x - a = 0, $ab^2 = 0$. Obviously it is not a global maximum. If $a = \frac{x}{3}$, then $b = x - a = \frac{2x}{3}$, $ab^2 = \frac{x}{3} \cdot \frac{4}{9}x^2 = \frac{4}{27}x^3$. If a < 0, then $\frac{df}{da} > 0 \le a > \frac{x}{3}$ or a < x, hence $a = \frac{x}{3}$ is a local maximum and $b = x - a = x - \frac{x}{3} = \frac{2x}{3}$; $ab^2 = \frac{x}{3} \cdot \frac{4x^2}{9} = \frac{4}{27}x^3$. Case 2: x = 0.

If x = 0, then b = -a, $ab^2 = a(-a)^2 = a^3$ is increasing and the maximum is not attained.

Thus, the numbers are $\frac{x}{3}$ and $\frac{2x}{3}$ whose sum is x if the product of one by the square of the other is to be a maximum.

Answer: $\frac{x}{3}$ and $\frac{2x}{3}$, where $x \neq 0$.

www.AssignmentExpert.com