Answer on Question \#63934 - Math - Calculus

Question

Find the numbers whose sum is x, if the product of one by the square of the other is to be a maximum.

Solution

$$
\begin{gathered}
a b^{2} \rightarrow \max \\
a+b=x
\end{gathered}
$$

It follows from the equation that $b=x-a$, then

$$
\begin{aligned}
& a b^{2}=a(x-a)^{2} \\
& f(a)=a(x-a)^{2} \rightarrow \max \\
& \frac{d f}{d a}=\left(a(x-a)^{2}\right)^{\prime}=(x-a)^{2}+a \cdot 2 \cdot(x-a) \cdot(-1)=(x-a) \cdot((x-a)-2 a)= \\
& =(x-a)(x-3 a) \text {, } \\
& \frac{d f}{d a}=(x-a)(x-3 a) \\
& \frac{d f}{d a}>0<=> \\
& (x-a)(x-3 a)>0<=> \\
& {\left[\begin{array}{l}
\left\{\begin{array}{c}
x-a>0, \\
x-3 a>0 ;
\end{array}\right. \\
\left\{\begin{array}{c}
x-a<0, \\
x-3 a<0 ;
\end{array}\right.
\end{array}\right.} \\
& {\left[\begin{array}{c}
\left\{\begin{array}{c}
a<x, \\
a<x / 3 ;
\end{array}\right. \\
\left\{\begin{array}{l}
a>x, \\
a>\frac{x}{3}
\end{array}\right.
\end{array}\right.}
\end{aligned}
$$

Case 1: $x \neq 0$.
If $a=0$, then $b=x$ and $a b^{2}=0$. Obviously it is not a global maximum.

If $a>0$, then $\frac{d f}{d a}>0<=>a>x$ or $a<\frac{x}{3}$.
If $a=x$, then $b=x-a=0, a b^{2}=0$. Obviously it is not a global maximum.
If $a=\frac{x}{3}$, then $b=x-a=\frac{2 x}{3}, \quad a b^{2}=\frac{x}{3} \cdot \frac{4}{9} x^{2}=\frac{4}{27} x^{3}$.
If $a<0$, then $\frac{d f}{d a}>0<=>a>\frac{x}{3}$ or $a<x$, hence $a=\frac{x}{3}$ is a local maximum and $b=x-a=x-\frac{x}{3}=\frac{2 x}{3} ; a b^{2}=\frac{x}{3} \cdot \frac{4 x^{2}}{9}=\frac{4}{27} x^{3}$.

Case 2: $x=0$.
If $x=0$, then $b=-a, a b^{2}=a(-a)^{2}=a^{3}$ is increasing and the maximum is not attained.
Thus, the numbers are $\frac{x}{3}$ and $\frac{2 x}{3}$ whose sum is x if the product of one by the square of the other is to be a maximum.
Answer: $\frac{x}{3}$ and $\frac{2 x}{3}$, where $x \neq 0$.

