Answer on Question \#63931 - Math - Calculus

Question

Find the equation of the line tangent to the curve $y=3 x^{2}-4 x$ and parallel to the line

$$
x-2 y+6=0
$$

Solution

$$
x-2 y+6=0 \rightarrow y=\frac{1}{2} x+3
$$

Thus, the slope of the tangent line is $m=\frac{1}{2}$.
Using the equation of the curve $y=3 x^{2}-4 x$ compute

$$
y^{\prime}=\left(3 x^{2}-4 x\right)^{\prime}=3 \cdot 2 x-4=6 x-4
$$

We need to find the point $\left(x_{0} ; y_{0}\right)$ so that $y^{\prime}\left(x_{0}\right)=\frac{1}{2}$.

$$
\begin{gathered}
6 x_{0}-4=\frac{1}{2} \rightarrow x_{0}=\frac{3}{4} \\
y_{0}=3 \cdot\left(\frac{3}{4}\right)^{2}-4 \cdot \frac{3}{4}=-\frac{21}{16}
\end{gathered}
$$

Now using the point - slope form of the line we can find the equation of the tangent line:

$$
\begin{aligned}
& y-y_{0}=m\left(x-x_{0}\right) \\
& y+\frac{21}{16}=\frac{1}{2}\left(x-\frac{3}{4}\right)
\end{aligned}
$$

The equation of tangent line is

$$
y=\frac{1}{2} x-\frac{27}{16}
$$

Answer: $y=\frac{1}{2} x-\frac{27}{16}$.

