Answer on Question \#63930 - Math - Calculus

Question

Find the tangent line to the curve

$$
y=x^{4}+4 x^{3}-8 x^{2}+3 x+70
$$

with slope 3.

Solution

If the slope of tangent line is equal to 3 , then

$$
y^{\prime}=\left(x^{4}+4 x^{3}-8 x^{2}+3 x+70\right)^{\prime}=4 x^{3}+12 x^{2}-16 x+3=3
$$

at this point. So

$$
\begin{gathered}
4 x^{3}+12 x^{2}-16 x=0 \\
4 x\left(x^{2}+3 x-4\right)=0 \\
x=0 \text { or } x^{2}+3 x-4=0
\end{gathered}
$$

Applying Viet's theorem the roots of $x^{2}+3 x-4=0$ are 1 and -4 .
Thus, $x_{1}=0, x_{2}=-4, x_{3}=1$.
The equation of the tangent line is

$$
y-y\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

If $x_{1}=0$, then

$$
y\left(x_{1}\right)=0^{4}+4 \cdot 0^{3}-8 \cdot 0^{2}+3 \cdot 0+70=70
$$

and tangent line at the point $(0,70)$ is

$$
\begin{aligned}
& y-70=3 x \\
& y=3 x+70 .
\end{aligned}
$$

If $x_{2}=-4$ then

$$
y\left(x_{2}\right)=(-4)^{4}+4 \cdot(-4)^{3}-8 \cdot(-4)^{2}+3 \cdot(-4)+70=-70
$$

and tangent line at the point $(-4,-70)$ is

$$
\begin{gathered}
y+70=3(x+4) \\
y=3 x-58 .
\end{gathered}
$$

If $x_{3}=1$, then

$$
y\left(x_{3}\right)=1^{4}+4 \cdot 1^{3}-8 \cdot 1^{2}+3 \cdot 1+70=70
$$

and tangent line at the point $(1,70)$ is

$$
\begin{gathered}
y-70=3(x-1) \\
y=3 x+67
\end{gathered}
$$

Answer:

$y=3 x+70$ at $(0,70)$,
$y=3 x-58$ at $(-4,-70)$,
$y=3 x+67$ at $(1,70)$.

