Answer on Question #63839 - Math - Real Analysis

Question

Prove that set of reals \mathbb{R} is an ordered field.

Solution

<u>Axioms of addition</u>. For any two real numbers a, b, there is an operation of addition which associates their sum denoted by a + b. The operation of addition satisfies the following axioms:

- A1. (Associativity) (x + y) + z = x + (y + z).
- A2. (Existence of zero) There is a real number, called zero and denoted by 0, such that x + 0 = 0 + x = x for all real numbers x.
- A3. (Existence of negative) For every $x \in \mathbb{R}$ there is $y \in \mathbb{R}$ such that

x + y = y + x = 0. The number y is called the negative of x and denoted by -x.

A4. (Commutativity) x + y = y + x.

Hence \mathbb{R} with the operation of addition is a commutative group.

<u>Axioms of multiplication</u>. There is an operation of multiplication which associates with any two real numbers x, y, the number $x \cdot y$. It satisfies the following axioms:

- M1. (Associativity) $(x \cdot y) \cdot = x \cdot (y \cdot z)$.
- M2. (Existence of identity) There is a real number, called identity and denoted by 1, such that $1 \neq 0$ and $1 \cdot x = x \cdot 1 = x$ for all real numbers x.
- M3. (Existence of reciprocal) For every $x \in \mathbb{R} \setminus \{0\}$ there is $y \in \mathbb{R}$ such that $x \cdot y = y \cdot x = 1$. (the number y is called the reciprocal of x and denoted by x –1 or 1 x).
- M4. (Commutativity) $x \cdot y = y \cdot x$.

Hence $\mathbb{R} \setminus \{0\}$ together with the multiplication is a commutative group.

The distributive law. The next axiom defines the relation between the two operations.

$$D. x \cdot (y + z) = x \cdot y + x \cdot z$$

All computational rules for real numbers follow from the axioms A1–A4, M1-M4, D.

<u>Order</u> There is a subset P of \mathbb{R} , called the set of positive numbers, satisfying the following two exioms:

- O1. If $x, y \in P$, then x + y and $x \cdot y \in P$.
- **O2.** For every $x \in \mathbb{R}$, either $x \in P$ or x = 0 or $-x \in P$.

The axioms O1 and O2 imply that 1 is a positive number. Indeed, since $1 \neq 0$, the axiom O1 implies that either 1 or -1 is positive. Since $1 = 1 \cdot 1 = (-1) \cdot (-1)$, the axiom O1 implies that 1 is positive.

A set X with two operations, addition and multiplication, which satisfy axioms A1–A4, M1-M4, D and O1-O2 is called an ordered field. The set of real numbers $\mathbb R$ is an ordered field.
www.AssignmentExpert.com