Answer on Question \#63756 - Math - Calculus

Question

To fill an order for 100 units of a product, a firm wishes to distribute the production between its two plants, Plant 1 and Plant 2.

The total cost function is given by

$$
c=f\left(q_{1}, q_{2}\right)=0.5 q_{1}^{2}+2 q_{1}+32 q_{2}+500
$$

where q_{1} and q_{2} are the number of units produced at Plants 1 and 2 , respectively. How should the output be distributed in order to minimize costs?

Solution

We have that

$$
q_{1}+q_{2}=100 \Rightarrow q_{2}=100-q_{1}
$$

Then
$c=0.5 q_{1}^{2}+2 q_{1}+32 q_{2}+500=0.5 q_{1}^{2}+2 q_{1}+32\left(100-q_{1}\right)+500 ;$
$c=g\left(q_{1}\right)=0.5 q_{1}^{2}-30 q_{1}+3700$.
To minimize the function $g\left(q_{1}\right)$ we find
$g^{\prime}\left(q_{1}\right)=\left(0.5 q_{1}^{2}-30 q_{1}+3700\right)^{\prime}=0.5 \cdot 2 q_{1}-30=q_{1}-30$;
$g^{\prime}\left(q_{1}\right)=0=>q_{1}-30=0=>q_{1}=30$;
$g^{\prime \prime}\left(q_{1}\right)=\left(g^{\prime}\left(q_{1}\right)\right)^{\prime}=\left(q_{1}-30\right)^{\prime}=1>0=>q_{1}=30$ is minimum.
If $q_{1}=30$, then $q_{2}=100-30=70$ and
$c=f(30,70)=0.5 \cdot 30^{2}+2 \cdot 30+32 \cdot 70+500=3190$.
Answer: 30 and 70 units produced at Plants 1 and 2, respectively.

