Answer on Question #63722 – Math – Statistics and Probability

Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.

(a) Suppose n = 36 and p = 0.23.

Question

Can we approximate \hat{p} by a normal distribution? Why? (Use 2 decimal places.)

Solution

np = 36 * 0.23 = 8.28 > 5nq = 36 * 0.77 = 27.22 > 5and \hat{p} can be approximated by a normal random variable, because

np > 5 and nq > 5.

Answer: yes; because np > 5 and nq > 5.

Question

What are the values of $\mu \hat{p}$ and $\sigma \hat{p}$? (Use 3 decimal places.)

Solution

Answer: 8.28; 2.525.

(b) Suppose n = 25 and p = 0.15.

Question

Can we safely approximate \hat{p} by a normal distribution? Why or why not?

Solution

np = 25 * 0.15 = 3.75 < 5nq = 25 * 0.85 = 21.25 > 5and \hat{p} cannot be approximated by a normal random variable because np < 5. **Answer:** no; because np < 5.

(c) Suppose n = 58 and p = 0.21.

Question

Can we approximate \hat{p} by a normal distribution? Why? (Use 2 decimal places.)

Solution

np = 58 * 0.21 = 12.18 > 5nq = 58 * 0.79 = 45.82 > 5and \hat{p} can be approximated by a normal random variable because np > 5 and nq > 5. **Answer:** yes; because np > 5 and nq > 5.

Question

What are the values of $\mu \hat{p}$ and $\sigma \hat{p}$? (Use 3 decimal places.)

Solution

 $\mu \hat{p} = np = 12.180$ $\sigma \hat{p} = \sqrt{npq} = 3.102$ **Answer:** 12.180; 3.102

www.AssignmentExpert.com