Answer on Question #63634 - Math - Linear Algebra

Question

Let Bn the ($n \times n$) submatrix in the TOP left hand corner of B. Define B1, B2, B3 and B4. Compute determinate of B1, B2, B3 and B4. Find conditions of a, b, c, d such that 4 determinants cannot be negative.

Solution

B1 = (0) is 1×1 matrix, det(B1) = 0 for all values of a, b, c, d.

$$B2=\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$$
 is 2×2 matrix, $det(B2)=0\cdot 0-b\cdot a=-ab$. So $det(B2)\geq 0$ is equivalent to $ab\leq 0$.

$$B3 = \begin{pmatrix} 0 & a & 0 \\ b & 0 & 0 \\ 0 & 0 & c \end{pmatrix} \text{ is } 3\times3 \text{ matrix, } \det(B3) = c \cdot \det(B2) = -abc \text{ . So } \det(B3) \geq 0 \text{ is equivalent}$$
 to $abc \leq 0$.

$$B4 = \begin{pmatrix} 0 & a & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \text{ is } 4\times 4 \text{ matrix, } det(B4) = d \cdot det(B3) = -abcd \text{ . So } det(B4) \geq 0 \text{ is } det(B4) = d \cdot det(B3) = -abcd \text{ . } det(B4) \geq 0 \text{ is } det(B4) = d \cdot det(B3) = -abcd \text{ . } det(B4) \geq 0 \text{ is } det(B4) = d \cdot det(B3) = -abcd \text{ . } det(B4) \geq 0 \text{ is } det(B4) = d \cdot det(B3) = -abcd \text{ . } det(B4) \geq 0 \text{ is } det(B4) = d \cdot det(B4)$$

equivalent to $abcd \leq 0$.

These 4 determinants cannot be negative if one of the following conditions holds:

- 1) ab = 0;
- 2) (ab < 0) and (c = 0);
- 3) (ab < 0) and (c > 0) and $(d \ge 0)$.

Answer: 1) ab = 0; 2) (ab < 0) and (c = 0); 3) (ab < 0) and (c > 0) and $(d \ge 0)$.