Answer on Question #63551 – Math – Statistics and Probability Question

The table below shows discrete frequency distribution data. Use it to answer the questions that follow.

Class	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39
Frequency	5	8	10	12	7	6	3	2

Compute:

(i) Mode of the distribution

(ii) The 7th decile

(iii)The third quartile

Solution

(i) To find the mode of grouped distribution, the following formula will be used:

$$Mode = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \cdot h,$$

where l is the lower limit of model class, f_0 is the frequency of class preceding, f_1 is the frequency of that class and f_2 is the frequency of class succeeding the model class respectively, h is the class width.

Let's put the numbers into a table:

Class	Frequency	Cumulative Frequency	
0-4	5	5	
5-9	8	13	
10-14	$10(f_0)$	23	
15-19	$12(f_1)$	35	Mode interval
20-24	$7(f_2)$	42	7th decile and third quartile
			interval
25-29	6	48	
30-34	3	51	
35-39	2	53	
$\sum f$	53		

The mode containing class is [15-19] has the biggest frequency 12. So the mode value is

$$Mode = 15 + \frac{12 - 10}{2 \cdot 12 - 10 - 7} \cdot 4 = 16\frac{1}{7} \approx 16.14.$$

(ii) To find the 7th decile, we need to use the formula:

$$D_{k} = l_{i} + \frac{\frac{k}{10} \cdot \sum f - f_{D_{k}-1}'}{f_{D_{k}-1}} \cdot h,$$

where l_i is the lower limit of decile class, $\sum f$ is the sum of the absolute frequency; $f'_{D_{k-1}}$ is absolute frequency lies below the decile class; $f_{D_{k-1}}$ is frequency of the decile class; k is the decile number; h is the class width.

The 7th decile containing class is [20-24], because Cumulative frequency in that interval is $42 > 37.1 = \frac{53}{10} \cdot 7$. Therefore

$$D_k = 20 + \frac{\frac{7}{10} \cdot 53 - 35}{7} \cdot 4 = 21.2.$$

(iii) To find the third quartile, we need to use the formula:

$$Q_3 = l + \frac{0.75 \cdot \sum f - f'_{Q_3^{-1}}}{f_{Q_3^{-1}}} \cdot h,$$

where *l* is the lower limit of the third quartile class, $\sum f$ is the sum of the absolute frequency; $f'_{Q_{3}-1}$ is absolute frequency lies below the quartile class; $f_{Q_{3}-1}$ is frequency of the quartile class; *h* is the class width.

The third quartile containing class is [20-24], because Cumulative frequency in that interval is $42 > 39.75 = \frac{53}{4} \cdot 3$.

$$Q_3 = 20 + \frac{0.75 \cdot 53 - 35}{7} \cdot 4 = 22.71.$$

Answer: (i) 16.14; (ii) 21.2; (iii) 22.71.