Answer on Question \#63412 - Math - Discrete Mathematics

Suppose that you need to deliver the message "161803398" which is the pass key for a weapon activation to country X. Encrypt the message using Caesar cipher with the encryption key,

$$
\left(n+2^{2}\right) \bmod 10
$$

where $n=0,1,2, \ldots, 9$,
without being intercepted and decrypted by other countries. Using number theory method:

Question

(a) State the decrypted message.

Solution

(a)

We shall encrypt the message "161803398" using Caesar cipher with the encryption key $\left(n+2^{2}\right) \bmod 10$:
$n=1: y=(1+4) \bmod 10=5, y$ is a symbol of the encrypted message;
$n=6: y=(6+4) \bmod 10=0 ;$
$n=1: y=(1+4) \bmod 10=5 ;$
$n=8: y=(8+4) \bmod 10=2$;
$n=0: y=(0+4) \bmod 10=4$;
$n=3: y=(3+4) \bmod 10=7 ;$
$n=3: y=(3+4) \bmod 10=7$;
$n=9: y=(9+4) \bmod 10=3 ;$
$n=8: y=(8+4) \bmod 10=2$.

Answer:

Encrypted message is 505247732 .

Question

(b) Determine the decryption key.

Solution

(b)

Decryption key:
$x=(y-4+10) \bmod 10 ;$
$x=(y+6) \bmod 10$, where x is a symbol of the original message.
Answer: decryption key is $x=(y+6) \bmod 10$.

Question

(c) Suggest an improvement to the encryption key to increase the encryption strength.

Solution

(c) Example of improvement to the encryption key:

$$
(n+30) \bmod 20
$$

The encryption strength of this key is greater because every symbol of original message is encrypted with two symbols.

Answer: $(n+30)$ mod20.

