Answer on Question #63412 – Math – Discrete Mathematics

Suppose that you need to deliver the message "161803398" which is the pass key for a weapon activation to country X. Encrypt the message using Caesar cipher with the encryption key,

 $(n + 2^2)mod10$

where n = 0, 1, 2, ..., 9,

without being intercepted and decrypted by other countries. Using number theory method:

Question

(a) State the decrypted message.

Solution

(a)

We shall encrypt the message "161803398" using Caesar cipher with the encryption key $(n + 2^2)mod10$:

n = 1: y = (1 + 4)mod10 = 5, y is a symbol of the encrypted message;

$$n = 6$$
: $y = (6 + 4)mod10 = 0$;

$$n = 1$$
: $y = (1 + 4)mod10 = 5$;

$$n = 8$$
: $y = (8 + 4)mod10 = 2$;

$$n = 0$$
: $y = (0 + 4)mod10 = 4$;

$$n = 3$$
: $y = (3 + 4)mod10 = 7$;

- n = 3: y = (3 + 4)mod10 = 7;
- n = 9: y = (9 + 4)mod10 = 3;
- n = 8: y = (8 + 4)mod10 = 2.

Answer:

Encrypted message is 505247732.

Question

(b) Determine the decryption key.

Solution

(b)

Decryption key:

x = (y - 4 + 10)mod10;

x = (y + 6)mod10, where x is a symbol of the original message. Answer: decryption key is x = (y + 6)mod10.

Question

(c) Suggest an improvement to the encryption key to increase the encryption strength.

Solution

(c) Example of improvement to the encryption key:

$(n + 30)mod \ 20$

The encryption strength of this key is greater because every symbol of original message is encrypted with two symbols.

Answer: (n + 30)mod20.

www.AssignmentExpert.com